

Imprint

Published in August 2011

Smashing Media GmbH, Freiburg, Germany

Cover Design: Ricardo Gimenes

Editing: Thomas Burkert

Proofreading: Brian Goessling

Concept: Sven Lennartz, Vitaly Friedman

Founded in September 2006, Smashing Magazine delivers useful and
innovative information to Web designers and developers. Smashing
Magazine is a well-respected international online publication for
professional Web designers and developers. Our main goal is to support
the Web design community with useful and valuable articles and resources,
written and created by experienced designers and developers.

ISBN: 9783943075137

Version: July 25, 2011

Smashing eBook #9│Mastering CSS for Web Developers │ 2

http://www.smashingmagazine.com
http://www.smashingmagazine.com

Table of Contents
Preface

Why We Should Start Using CSS3 and HTML5 Today

CSS Three — Connecting the Dots

Modern CSS Layouts: The Essential Characteristics

Modern CSS Layouts, Part 2: The Essential Techniques

How to Use CSS3 Pseudo-Classes

Taming Advanced CSS Selectors

!important CSS Declarations: How and When to Use Them

An Introduction to CSS3 Keyframe Animations

CSS Specificity and Inheritance

How to Use CSS3 Media Queries to Create a Mobile Website

Responsive Web Design: What It Is and How to Use It

The Future of CSS: Experimental CSS Properties

Technical Web Typography: Guidelines and Techniques

The Future of CSS Typography

Using CSS3: Older Browsers and Common Considerations

The Authors

Smashing eBook #9│Mastering CSS for Web Developers │ 3

Preface
Many Web designers are reluctant to embrace the new technologies such
as CSS3 or HTML5 because of the lack of full cross-browser support for
these technologies. Many designers are complaining how this situation is
holding them back and tying their hands.

But the day of full cross-browser support is never truly going to dawn and
deliver us this wonderful new Web where our work looks the same with any
Web browser. Some users will still use older browsers and some users will
still have browsers with deactivated JavaScript or images. Sometimes it feels
that we are hiding behind the lack of cross-browser compatibility to avoid
learning new techniques that would actually dramatically improve our
workflow.

This Smashing eBook “Mastering CSS for Web Developers” is created to help
Web designers embracing the Web’s flexibility and using CSS techniques
that work today. This eBook contains 15 articles that cover useful
techniques, tricks and guidelines from experts on topics such as modern
CSS layouts, responsive Web design, CSS typography, CSS cross-browser
compatibility, as well as many other advanced CSS techniques.

The articles have been published on Smashing Magazine in 2010 and 2011,
and they have been carefully edited and prepared for this eBook.

We hope that you will find this eBook useful and valuable. We are looking
forward to your feedback on Twitter or via our contact form.

— Thomas Burkert, Smashing eBook Editor

Smashing eBook #9│Mastering CSS for Web Developers │ 4

http://twitter.com/smashingmag
http://twitter.com/smashingmag
http://www.smashingmagazine.com/contact/
http://www.smashingmagazine.com/contact/

Why We Should Start Using CSS3 and
HTML5 Today
Vitaly Friedman

For a while now, we have taken notice of how many designers are reluctant
to embrace the new technologies such as CSS3 or HTML5 because of the
lack of full cross-browser support for these technologies. Many designers
are complaining about the numerous ways how the lack of cross-browser
compatibility is effectively holding us back and tying our hands — keeping
us from completely being able to shine and show off the full scope of our
abilities in our work. Many are holding on to the notion that once this push
is made, we will wake to a whole new Web — full of exciting opportunities
just waiting on the other side. So they wait for this day. When in reality, they
are effectively waiting for Godot.

Just like the elusive character from Beckett’s classic play, this day of full
cross-browser support is not ever truly going to find its dawn and deliver us
this wonderful new Web where our work looks the same within the window
of any and every Web browser. Which means that many of us in the online
reaches, from clients to designers to developers and on, are going to need
to adjust our thinking so that we can realistically approach the Web as it is
now, and more than likely how it will be in the future.

Sometimes it feels that we are hiding behind the lack of cross-browser
compatibility to avoid learning new techniques that would actually
dramatically improve our workflow. And that’s just wrong. Without an
adjustment, we will continue to undersell the Web we have, and the

Smashing eBook #9│Mastering CSS for Web Developers │ 5

landscape will remain unexcitingly stale and bound by this underestimation
and mindset.

Adjustment in Progress

Sorry if any bubbles are bursting here, but we have to wake up to the fact
that full cross-browser support of new technologies is just not going to
happen. Some users will still use older browsers and some users will still
have browsers with deactivated JavaScript or images; some users will be
having weird view port sizes and some will not have certain plugins
installed.

But that’s OK, really.

The Web is a damn flexible medium, and rightly so. We should embrace its
flexibility rather than trying to set boundaries for the available technologies
in our mindset and in our designs. The earlier we start designing with the
new technologies, the quicker their wide adoption will progress and the
quicker we will get by the incompatibility caused by legacy browsers. More
and more users are using more advanced browsers every single day, and by
using new technologies, we actually encourage them to switch (if they can).
Some users will not be able to upgrade, which is why our designs should
have a basic fallback for older browsers, but it can’t be the reason to design
only the fallback version and call it a night.

Smashing eBook #9│Mastering CSS for Web Developers │ 6

Select[ivizr] is one of the many tools that make it possible to use CSS3 today.

There are so many remarkable things that we, designers and developers,
can do today: be it responsive designs with CSS3 media queries, rich Web
typography (with full support today!) or HTML5 video and audio. And there
are so many useful tools and resources that we can use right away to
incorporate new technologies in our designs while still supporting older
browsers. There is just no reason not to use them.

We are the ones who can push the cross-browser support of these new
technologies, encouraging and demanding the new features in future
browsers. We have this power, and passing on it just because we don’t feel

Smashing eBook #9│Mastering CSS for Web Developers │ 7

http://selectivizr.com/
http://selectivizr.com/

like there is no full support of them yet, should not be an option. We need
to realize that we are the ones putting the wheels in motion and it’s up to
us to decide what will be supported in the future browsers and what will
not.

More exciting things will be coming in the future. We should design for the
future and we should design for today — making sure that our progressive
designs work well in modern browsers and work fine in older browsers. The
crucial mistake would be clinging to the past, trying to work with the old
nasty hacks and workarounds that will become obsolete very soon.

We can continue to cling to this notion and wait for older browsers to
become outdated, thereby selling ourselves and our potential short, or we
can adjust our way of thinking about this and come at the Web from a
whole new perspective. One where we understand the truth of the situation
we are faced with. That our designs are not going to look the same in every
browser and our code will not render the same in every browser. And that’s
the bottom line.

Smashing eBook #9│Mastering CSS for Web Developers │ 8

Yaili’s beautiful piece My CSS Wishlist on 24ways. Articles like these are the ones
that push the boundaries of Web design and encourage more innovation in the
industry.

Andy Clarke spoke about this at the DIBI Conference earlier this year (you
can check his presentation Hardboiled Web Design on Vimeo). He really
struck a nerve with his presentation, yet still we find so many stalling in this
dream of complete Web standardization. So we wanted to address this
issue here and keep this important idea being discussed and circulated.
Because this waiting is not only hurting those of us working with the Web,

Smashing eBook #9│Mastering CSS for Web Developers │ 9

http://24ways.org/2010/my-css-wish-list
http://24ways.org/2010/my-css-wish-list
http://vimeo.com/17137962
http://vimeo.com/17137962

but all of those who use the Web as well. Mainly through this plethora of
untapped potential which could improve the overall experience across the
spectrum for businesses, users and those with the skills to bring this
sophisticated, rich, powerful new Web into existence.

For Our Clients

Now this will mean different things for different players in the game. For
example, for our clients this means a much more developed and uniquely
crafted design that is not bound by the boxes we have allowed our thinking
to be contained in. However, this does come with a bit of a compromise
that is expected on the parts of our clients as well. At least it does for this to
work in the balanced and idealized way these things should play out. But
this should be expected. Most change does not come without its
compromises.

In this case, our clients have to accept the same truism that we do and
concede that their projects will not look the same across various browsers.
This is getting easier to convince them of in these times of the expanding
mobile market, but they may still not be ready to concede this inch on the
desktop side of the coin. Prices might be adjusted in some cases too, and
that may be another area that the clients are not willing to accept. But with
new doors being opened and more innovation, comes more time and
dedicated efforts. These are a few of the implications for our clients, though
the expanded innovation is where we should help them focus.

Smashing eBook #9│Mastering CSS for Web Developers │ 10

In short:

• Conceding to the idea that the project will not be able to look the
same across various browsers,

• This means more developed and unfettered imaginative designs for
our clients

• This could lead to increased costs for clients as well, but with higher
levels of innovation

• Client’s visions for what they want will be less hindered by these
limitations

For the Users

The users are the ones who have the least amount invested in most of what
is going on behind the scenes. They only see the end result, and they often
do not think too much about the process that is involved which brings it to
the screens before them. Again, with the mobile market, they have already
come across the concept of varying interfaces throughout their varied
devices. They only care about the functionality and most probably the style
that appeals to them — but this is where their interest tends to end. Unless
of course, they too are within the industry, and they may give it a second
thought or more. So all this talk of cross-browser compatibility really
doesn’t concern them, they really leave all that up to us to worry about.

Users only ever tend to notice anything if and when something does not
work the way they expect it to from one place to the next. In most cases,
they are willing to show something to a relative, friend or colleague, and
suddenly from one device to the next, something is different that disrupts
their ability to do so. That is when they actually take notice. But if we have

Smashing eBook #9│Mastering CSS for Web Developers │ 11

done our jobs correctly, these transitions will remain smooth — even with
the pushing of the envelopes that we are doing. So there is not much more
that is going to change for the users other than a better experience. An
average user is not going to check if a given site has the same rounded
corners and drop-shadow in two different browsers installed on the user’s
machine.

In short:

• Potentially less disruptions of experience from one device to another

• An overall improved user experience

For Designers/Developers

We, the designers and developers of the Web, too have to make the same
concession our clients do and surrender the effort to craft the same exact
presentation and experience across the vast spectrum of platforms and
devices. This is not an easy idea to give up for a lot of those playing in
these fields, but as has been already mentioned, we are allowing so much
potential to be wasted. We could be taking the Web to new heights, but we
allow ourselves to get hung up on who gets left behind in the process —
and as a result we all end up getting left behind. Rather than viewing them
as separate audiences and approaching them individually, so to speak, we
allow the limitations of one group to limit us all.

Smashing eBook #9│Mastering CSS for Web Developers │ 12

Perhaps a divide and conquer mentality should be employed. Image Credit

So this could mean a bit more thought for the desired follow through, and
we are not suggesting that we strive to appease one group here and damn
the rest. Instead, we should just take a unified approach, designing for
those who can see and experience the latest, and another for those who
cannot. It wouldn’t mean more work if we design with those users in mind
and produce meaningful and clean code up front and then just adjust it for
older browsers. Having to remember that not everyone is afforded the
privilege of choosing which browser they are using. And if necessary, this
approach can be charged for. So it could lead to more revenue along with
exciting new opportunities — by bringing some of the fun back into the
work that being boxed in with limitations has robbed us of.

Smashing eBook #9│Mastering CSS for Web Developers │ 13

http://www.flickr.com/photos/michaelsgalpert/5071561135/
http://www.flickr.com/photos/michaelsgalpert/5071561135/

In short:

• Conceding to the idea that the project will not be able to look the
same across various browsers

• A more open playing field for designers and developers all around; less
restricted by this holding pattern

• More exciting and innovative landscape to attract new clientele

• Division of project audience into separate presentational approaches

• Probably less work involved because we don’t need the many hacks
and workarounds we’ve used before

So What Are We Waiting For?

So if this new approach, or adjusted way of thinking, can yield positive
results across the browsers for everyone involved, then why are we still
holding back? What is it that we are waiting for? Why not cast off these
limitations thrown upon our fields and break out of these boxes? The next
part of the discussion tries to figure out some of the contributing factors
that could be responsible for keeping us restrained.

Smashing eBook #9│Mastering CSS for Web Developers │ 14

Fear Factor

The fail awaits, and so some of us opt to stay back. Image by Ben Didier

One contributing factor that has to be considered, is perhaps that we are
being held back out of fear. This might be a fear of trying something new,
now that we have gotten so comfortable waiting for that magic day of
compatibility to come. This fear could also stem from not wanting to stand
up to some particular clients and try to make them understand this truism
of the Web and the concessions that need to be made — with regards to
consistent presentation across the browsers. We get intimated, so to speak,
into playing along with these unrealistic expectations, rather than trusting
that we can make them see the truth of the situation. Whatever the cause is
that drives this factor, we need to face our fears and move on.

Smashing eBook #9│Mastering CSS for Web Developers │ 15

http://www.flickr.com/photos/prettyuglydesign/4673681658/
http://www.flickr.com/photos/prettyuglydesign/4673681658/

It’s our responsibility of professionals to deliver high-quality work to our
clients and advocate on and protect user’s interests. It’s our responsibility to
confront clients when we have to, and we will have to do it at some point
anyway, because 100% cross-browser compatibility is just not going to
happen.

Comfortable Factor

A possible contributing factor that we should also look into is that some
people in the community are just too comfortable with how we design
today and are not willing to learn new technology. There are those of us
who already tire of the extra work involved in the testing and coding to
make everything work as it is, so we have little to no interest at all in an
approach that seemingly calls for more thought and time. But really, if we
start using new technologies today, we will have to master a learning curve
first, but the advantages are certainly worth our efforts. We should see it as
the challenge that will save us time and deliver better and cleaner code.

To some extent, today we are in the situation in which we were in the
beginning of 2000s; at those times when the emergence and growing
support of CSS in browsers made many developers question their approach
to designing Web sites with tables. If the majority of designers passed on
CSS back then and if the whole design community didn’t push the Web
standards forward, we probably still would be designing with tables.

Doubt Factor

Doubt is another thing we must consider when it comes to our being in
hold mode, and this could be a major contributor to this issue. We begin to
doubt ourselves and our ability to pull off this innovative, boundary

Smashing eBook #9│Mastering CSS for Web Developers │ 16

pushing-kind-of-work, or to master these new techniques and specs, so we
sink into the comfort of playing the waiting game and playing it safe with
our designs and code. We just accept the limitations and quietly work
around them, railing on against the various vendors and the W3C. We
should take the new technologies as the challenge to conquer; we’ve
learned HTML and CSS 2.1 and we can learn HTML5 and CSS3, too.

Faith Factor

Faith can be a good thing, but in this case, it can hold you back. Image by fotologic

Undoubtedly, some of us are holding off on moving forward into these new
areas because we are faithfully clinging to the belief that the cross-browser
support push will eventually happen. There are those saying that we will be

Smashing eBook #9│Mastering CSS for Web Developers │ 17

http://www.flickr.com/photos/fotologic/408096004/
http://www.flickr.com/photos/fotologic/408096004/

better off as a community if we allowed the Web to evolve, and that this
evolution should not be forced.

But this is not forcing evolution, it is just evolution. Just like with Darwin’s
theory, the Web evolves in stages, it does not happen for the entire
population at once. It is a gradual change over time. And that is what we
should be allowing to happen with the Web, gradually using and
implementing features for Web community here and there. This way
forward progress is happening, and nobody should be held back from
these evolutionary steps until we all can take them.

“It’s Too Early” Factor

Another possible contributor is the ever mocking “It’s too early” factor.
Some members of the online community faithfully fear that if they go
ahead and accept this new way forward and begin designing or developing
in accordance, then as soon as they begin completing projects, the support
might be dropped and they would need to update the projects they already
completed in the past. It’s common to think that it’s just too early to work
with new standards until they are fully implemented in many browsers;
because it’s just not safe to assume that they will be implemented at all.

However, one needs to understand the difference between two groups of
new features: the widely accepted ones (CSS3′s media queries, border-
radius. drop-shadows and HTML5 canvas are not going to disappear) and
the experimental ones. The widely accepted features are safe to use and
they will not disappear for certain; the experimental features can always be
extracted in a separate stylesheet and be easily updated and maintained
when necessary. It might be a good idea not to use experimental,

Smashing eBook #9│Mastering CSS for Web Developers │ 18

unsupported features in large corporate designs unless they are not
affecting the critical design elements of the design.

Validation Factor

We cannot forget to mention that there are also many of us who are
refusing to dabble in these new waters simply due to the fact that
implementing some of these techniques or styles would cause a plethora of
vendor-specific prefixes to appear in the stylesheet, thus impeding the
validation we as professionals strive for.

Many of us would never put forth any project that does not fully validate
with the W3C, and until these new specs are fully standardized and valid,
we are unwilling to include them in their work. And because using CSS3
usually means using vendor-specific prefixes, we shouldn’t be using CSS3.
Right?

Jeffrey Way’s article But It Doesn’t Validate

Smashing eBook #9│Mastering CSS for Web Developers │ 19

http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/

Well, not quite. As Jeffrey Way perfectly explains in his article But it Doesn’t
Validate, validation is not irrelevant, but the final score of the CSS validator
might be. As Jeffrey says,

“This score serves no higher purpose than to provide you with feedback.
It neither contributes to accessibility, nor points out best-practices. In
fact, the validator can be misleading, as it signals errors that aren’t
errors, by any stretch of the imagination.

[...] Validation isn’t a game, and, while it might be fun to test your skills
to determine how high you can get your score, always keep in mind: it
doesn’t matter. And never, ever, ever compromise the use of the latest
doctype, CSS3 techniques and selectors for the sake of validation.”

— Jeffrey Way

Having our work validate 100% is not always the best for the project. If we
make sure that our code is clean and accessible, and that it validates
without the CSS3/HTML5-properties, then we should take our work to the
next level, meanwhile sacrificing part of the validation test results. We
should not let this factor keep us back. If we have a chance for true
innovation, then we shouldn’t allow ourselves to be restrained by
unnecessary boundaries.

All in All…

Whatever the factors that keep us from daring into these new CSS3 styles
or new HTML5 coding techniques, just for a tangible example, need to be
gotten over. Plain and simple. We need to move on and start using CSS3
and HTML5 today. The community will become a much more exciting and
innovative playground, which in turn will improve experiences for as well as

Smashing eBook #9│Mastering CSS for Web Developers │ 20

http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/
http://net.tutsplus.com/articles/general/but-it-doesnt-validate/

draw in more users to this dynamic new Web, which in turn will attract
more clientele — effectively expanding the market. This is what could
potentially be waiting on the other side of this fence that we are timidly
facing — refusing to climb over it. Instead, waiting for a gate to be installed.

Only once we get past we get passed this limited way of looking at the
situation, only then will we finally stop falling short of the full potential of
ourselves and our field. Are there any areas that you would love to be
venturing into, but you are not because of the lack of complete cross
browser compatibility? Admittedly, I was a faith factor member of the
community myself — how about you? And what CSS3 or HTML5 feature are
you going to incorporate into your next design?

Smashing eBook #9│Mastering CSS for Web Developers │ 21

CSS Three — Connecting the Dots
Trent Walton

As a Web community, we’ve made a lot of exciting progress in regards to
CSS3. We’ve put properties like text-shadow & border-radius to
good use while stepping into using background-clip and visual effects
like transitions and animations. We’ve also spent a great deal of time
debating how and when to implement these properties. Just because a
property isn’t widely supported by browsers or fully documented at the
moment, it doesn’t mean that we shouldn’t be working with it. In fact, I’d
argue the opposite.

Best practices for CSS3 usage need to be hashed out in blog posts, during
spare time, and outside of client projects. Coming up with creative and
sensible ways to get the most out of CSS3 will require the kind of
experimentation wherein developers gladly trade ten failures for a single
success. Right now, there are tons of property combinations and uses out
there waiting to be discovered. All we have to do is connect the dots. It’s
time to get your hands dirty and innovate!

Where do I start?

One of my favorite things to do is to scan a list of CSS properties and
consider which ones might work well together. What would be possible if I
was to connect @font-face to text-shadow and the bg-clip:text
property? How could I string a webkit-transition and opacity
together in a creative way? Here are a few results from experiments I’ve

Smashing eBook #9│Mastering CSS for Web Developers │ 22

done recently. While some may be more practical than others, the goal here
is to spark creativity and encourage you to connect a few dots of your own.

Note: While Opera and Firefox may soon implement specs for many of the
CSS3 properties found here, some of these experiments will currently only
work in Webkit-browsers like Google Chrome or Safari.

Example #1: CSS3 Transitions

A safe place to start with CSS3 visual effects is transitioning a basic CSS
property like color, background-color, or border on hover. To kick
things off, let’s take a link color CSS property and connect it to a .4 second
transition.

Start with your link CSS, including the hover state:

1 a { color: #e83119; }

2 a:hover { color:#0a99ae; }

Now, bring in the CSS3 to set and define which property you’re
transitioning, duration of transition and how that transition will proceed
over time. In this case we’re setting the color property to fade over .4
seconds with an ease-out timing effect, where the pace of the transition
starts off quickly and slows as time runs out. To learn more about timing,
check out the Surfin’ Safari Blog post on CSS animations. I prefer ease-

Smashing eBook #9│Mastering CSS for Web Developers │ 23

http://trentwalton.com/css3/connecting_the_dots
http://trentwalton.com/css3/connecting_the_dots
http://webkit.org/blog/138/css-animation/
http://webkit.org/blog/138/css-animation/

out most of the time simply because it yields a more immediate transition,
giving users a more immediate cue that something is changing.

1 a {

2 -webkit-transition-property: color;

3 -webkit-transition-duration:.4s;

4 -webkit-transition-timing:ease-out;

5 }

You can also combine these into a single CSS property by declaring the
property, duration, and timing function in that order:

1 a { -webkit-transition: color .4s ease-out; }

View the live example here

The final product should be a red text link that subtly transitions to blue
when users hover with their mouse pointer. This basic transitioning
technique can be connected to an infinite amount of properties. Next, let’s
let’s create a menu bar hover effect where border-thickness is combined
with a .3 second transition.

To start, we’ll set a series of navigation links with a 3 pixel bottom border,
and a 50 pixel border on hover:

1 border-nav a { border-bottom: 3px solid #e83119 }

Smashing eBook #9│Mastering CSS for Web Developers │ 24

http://trentwalton.com/css3/connecting_the_dots
http://trentwalton.com/css3/connecting_the_dots
http://trentwalton.com/css3/connecting_the_dots
http://trentwalton.com/css3/connecting_the_dots

2 border-nav a:hover { border-bottom: 50px solid

#e83119 }

To bring the transition into the mix, let’s set a transition to gradually extend
the border thickness over .3 seconds in a single line of CSS:

1 border-nav a { -webkit-transition: border .3s ease-

out; }

View the live example here

Examples

This is just one example of how to use these transitions to enhance links
and navigation items. Here are a few other sites with similar creative
techniques:

Smashing eBook #9│Mastering CSS for Web Developers │ 25

http://trentwalton.com/css3/connecting_the_dots
http://trentwalton.com/css3/connecting_the_dots

Team Excellence
The webkit transition on all navigation items, including the main navigation
set at .2s provides a nice effect without making visitors wait too long for the
hover state.

Smashing eBook #9│Mastering CSS for Web Developers │ 26

http://teamexcellence.com/
http://teamexcellence.com/

Ackernaut
Ackernaut has subtle transitions on all link hovers, and extends the property
to fade the site header in/out.

Smashing eBook #9│Mastering CSS for Web Developers │ 27

http://www.ackernaut.com/
http://www.ackernaut.com/

DesignSwap
On DesignSwap, all text links have a .2 second transition on hover and the
swapper profiles fade out to real details about the latest designs.

Smashing eBook #9│Mastering CSS for Web Developers │ 28

http://design-swap.com/
http://design-swap.com/

Eric E. Anderson
Eric E. Andersion has taken CSS3 implementation even further by
implementing a transition on his main navigation for background color and
color alongside border-radius and box-shadow.

Example #2: Background Clip

When connected to properties like text-shadow and @font-face, the
background-clip property makes all things possible with type. To keep
things simple, we’ll start with taking a crosshatch image and masking it
over some text. The code here is pretty simple. Start by wrapping some
HTML in a div class called bg-clip:

1 <div class="bg-clip">

2 <h3>kablamo!</h3>

3 </div>

Smashing eBook #9│Mastering CSS for Web Developers │ 29

http://esquareda.com/
http://esquareda.com/

Now to the CSS. First, set the image you will be masking the text with as the
background-image. Then, set the -webkit-text-fill-color to
transparent and define the -webkit-background-clip property for the
text.

1 .bg-clip {

2 background: url(../img/clipped_image.png) repeat;

3 -webkit-background-clip: text;

4 -webkit-text-fill-color: transparent;

5 }

View the live example here

This opens the door for you to start adding texture or other graphic
touches to your type without resorting to using actual image files. For even
more CSS3 text experimentation, we can add the transform property to
rotate the text (or any element for that matter) to any number of degrees.
All it takes is a single line of CSS code:

1 -webkit-transform: rotate(-5deg);

2 -moz-transform: rotate(-5deg);

3 -o-transform: rotate (-5deg);

Smashing eBook #9│Mastering CSS for Web Developers │ 30

http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2

Note: While background-clip isn’t available in Firefox or Opera, the
transform property is, so we’ll set this for each browser.

View the live example here

Examples

This is a fairly simple implementation, but there are quite a few really
interesting and innovative examples of this technique:

Smashing eBook #9│Mastering CSS for Web Developers │ 31

http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2
http://trentwalton.com/css3/connecting_the_dots/#2

Trent Walton
An experiment of my own, combining bg-clip and @font-face to recreate
a recent design.

Smashing eBook #9│Mastering CSS for Web Developers │ 32

http://trentwalton.com/css3/type
http://trentwalton.com/css3/type

Neography
An excellent example of what is possible when you throw rotate, bg-
clip and @font-face properties together.

Smashing eBook #9│Mastering CSS for Web Developers │ 33

http://neography.com/experiment/type1/
http://neography.com/experiment/type1/

Everyday Works
One of the earliest innovative implementations of CSS text rotation I’ve
seen.

Smashing eBook #9│Mastering CSS for Web Developers │ 34

http://www.everydayworks.com/?p=318
http://www.everydayworks.com/?p=318

Panic Blog
The Panic blog randomly rotates divs / posts. Be sure to refresh to see
subtle changes in the degree of rotation.

Smashing eBook #9│Mastering CSS for Web Developers │ 35

http://www.panic.com/blog
http://www.panic.com/blog

Sam Brown
Sam’s got a really nice text-rotate hover effect on the “stalk” sidebar links.

Example #3: CSS Transforms, Box Shadow and RGBa

What used to take multiple divs, pngs and extra markup can now be
accomplished with a few lines of CSS code. In this example we’ll be
combining the transform property from example 2 with box-shadow and
RGBa color. To start things off, we’ll create 4 image files, each showing a
different version of the Smashing Magazine home page over time with a
class for the shadow and a specific class to achieve a variety of rotations.

Smashing eBook #9│Mastering CSS for Web Developers │ 36

http://sam.brown.tc/
http://sam.brown.tc/

Here’s the HTML:

1 <div class="boxes">

2 <img class="smash1 shadowed" src="../img/smash1.jpg"

alt="2007"/>

3 <img class="smash2 shadowed" src="../img/smash2.jpg"

alt="2008"/>

4 <img class="smash3 shadowed" src="../img/smash3.jpg"

alt="2009"/>

5 <img class="smash4 shadowed" src="../img/smash4.jpg"

alt="2010"/>

6 </div>

Smashing eBook #9│Mastering CSS for Web Developers │ 37

Let’s set up the CSS for the RGBA Shadow:

1 .shadowed {

2 border: 3px solid #fff;

3 -o-box-shadow: 0 3px 4px rgba(0,0,0,.5);

4 -moz-box-shadow: 0 3px 4px rgba(0,0,0,.5);

5 -webkit-box-shadow: 0 3px 4px rgba(0,0,0,.5);

6 box-shadow: 0 3px 4px rgba(0,0,0,.5);

7 }

Before moving forward, let’s be sure we understand each property here.
The box-shadow property works just like any drop shadow. The first two
numbers define the shadow’s offset for the X and Y coordinates. Here we’ve
set the shadow to 0 for the X, and 3 for the Y. The final number is the
shadow blur size, in this case it’s 4px.

RGBa is defined in a similar manner. RGBa stands for red, green, blue, alpha.
Here we’ve taken the RGB value for black as 0,0,0 and set it with a 50%
alpha level at .5 in the CSS.

Now, let’s finish off the effect by adding a little CSS Transform magic to
rotate each screenshot:

1 .smash1 { margin-bottom: -125px;

2 -o-transform: rotate(2.5deg);

3 -moz-transform: rotate(2.5deg);

4 -webkit-transform: rotate(2.5deg);

5 }

Smashing eBook #9│Mastering CSS for Web Developers │ 38

1 .smash2 {

2 -o-transform: rotate(-7deg);

3 -moz-transform: rotate(-7deg);

4 -webkit-transform: rotate(-7deg);

5 }

1 .smash3 {

2 -o-transform: rotate(2.5deg);

3 -moz-transform: rotate(2.5deg);

4 -webkit-transform: rotate(2.5deg);

5 }

1 .smash4 {

2 margin-top: -40px;

3 -o-transform: rotate(-2.5deg);

4 -moz-transform: rotate(-2.5deg);

5 -webkit-transform: rotate(-2.5deg);

6 }

View the live example here

Smashing eBook #9│Mastering CSS for Web Developers │ 39

http://trentwalton.com/css3/connecting_the_dots/#3
http://trentwalton.com/css3/connecting_the_dots/#3

Examples

Here are a few additional sites with these properties implemented right
now:

Butter Label
This site is jam packed with well-used CSS3. Notice the transform and
box-shadow properties on the subscribe form.

Smashing eBook #9│Mastering CSS for Web Developers │ 40

http://butterlabel.com/
http://butterlabel.com/

Hope 140
Another site with plenty of CSS3 enhancements, Hope 140’s End Malaria
campaign site features a collage of photographs that all have the same
shadow & transform properties outlined in our example.

Smashing eBook #9│Mastering CSS for Web Developers │ 41

http://www.hope140.org/endmalaria
http://www.hope140.org/endmalaria

Simon Collison
Simon Collison has implemented RGBa and box-shadow on each of the
thumbnail links for his new website.

Example #4: CSS3 Animations

If you really want to push the envelope and truly experiment with the latest
CSS3 properties, you’ve got to try creating a CSS3 keyframe animation. As a
simple introduction, let’s animate a circle .png image to track the outer
edges of a rectangle. To begin, let’s wrap circle.png in a div class:

1 <div class="circle_motion">

2

3 </div>

Smashing eBook #9│Mastering CSS for Web Developers │ 42

http://colly.com/
http://colly.com/

The first step in the CSS will be to set the properties for .circle_motion,
including giving it an animation name:

1 .circle_motion {

2 -webkit-animation-name: track;

3 -webkit-animation-duration: 8s;

4 -webkit-animation-iteration-count: infinite;

5 }

Now, all that remains is to declare properties for each percentage-based
keyframe. To keep things simple here, I’ve just broken down the 8 second
animation into 4 quarters:

1 @-webkit-keyframes track {

2 0% {

3 margin-top:0px;

4 }

5 25% {

6 margin-top:150px;

7 }

8 50% {

9 margin-top:150px;

10 margin-left: 300px;

11 }

Smashing eBook #9│Mastering CSS for Web Developers │ 43

http://trentwalton.com/css3/connecting_the_dots/#4
http://trentwalton.com/css3/connecting_the_dots/#4

12 75% {

13 margin-top:0px;

14 margin-left: 300px;

15 }

16 100% {

17 margin-left:0px;

18 }

19 }

View the live example here

Examples

A few examples of CSS3 animations online now:

Hope 140
Hope 140 subtly animates their yellow “Retweet to Donate $10” button’s
box shadow.

Smashing eBook #9│Mastering CSS for Web Developers │ 44

http://trentwalton.com/css3/connecting_the_dots/#4
http://trentwalton.com/css3/connecting_the_dots/#4
http://www.hope140.org/endmalaria
http://www.hope140.org/endmalaria

Optimum7
Anthony Calzadilla has recreated the Spider Man opening credits using
CSS3 with JQuery and HTML5. You can also learn more about the process in
his article “Pure CSS3 Spiderman Cartoon w/ jQuery and HTML5 – Look Ma,
No Flash!”.

Smashing eBook #9│Mastering CSS for Web Developers │ 45

http://www.optimum7.com/css3-man/animation.html
http://www.optimum7.com/css3-man/animation.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html
http://www.optimum7.com/internet-marketing/web-development/pure-css3-spiderman-ipad-cartoon-jquery-html5-no-flash.html

The Many Faces Of…
The Many Faces Of… animates the background position of a div to create
an effect where characters creep up from the bottom of the page.

Smashing eBook #9│Mastering CSS for Web Developers │ 46

http://themanyfacesof.com/four-oh-four/rickman.html
http://themanyfacesof.com/four-oh-four/rickman.html

OK, Dots connected! Now what?

Yes, all of this CSS3 stuff is insanely exciting. If you’re like me, you’ll want to
start finding places to use it in the real world immediately. With each new
experimental usage come even more concerns about implementation. Here
are a few of my ever-evolving opinions about implementing these
properties online for your consideration.

• CSS3 enhancements will never take the place of solid user-experience
design.

• Motion and animation demands attention. Think about a friend waving
to get your attention from across a crowded room or a flashing traffic
light. Heavy-handed or even moderate uses of animation can
significantly degrade user experience. If you are planning on
implementing these techniques on a site with any sort of A to B
conversion goals, be sure to consider the psychology of motion.

• Don’t make people wait on animations. Especially when it comes to
hover links, be sure there is an immediate state-change cue.

• Many of these effects can be used in a bonus or easter-egg type of
application. Find places to go the extra mile.

Smashing eBook #9│Mastering CSS for Web Developers │ 47

Modern CSS Layouts: The Essential
Characteristics
Zoe Mickley Gillenwater

Now is an exciting time to be creating CSS layouts. After years of what felt
like the same old techniques for the same old browsers, we’re finally seeing
browsers implement CSS 3, HTML 5 and other technologies that give us
cool new tools and tricks for our designs.

But all of this change can be stressful, too. How do you keep up with all of
the new techniques and make sure your Web pages look great on the
increasing number of browsers and devices out there? In part 1 of this
article, you’ll learn the five essential characteristics of successful modern
CSS websites. In part 2 of this article, you’ll learn about the techniques and
tools that you need to achieve these characteristics.

We won’t talk about design trends and styles that characterize modern
CSS-based layouts. These styles are always changing. Instead, we’ll focus on
the broad underlying concepts that you need to know to create the most
successful CSS layouts using the latest techniques. For instance, separating
content and presentation is still a fundamental concept of CSS Web pages.
But other characteristics of modern CSS Web pages are new or more
important than ever. A modern CSS-based website is: progressively
enhanced, adaptive to diverse users, modular, efficient and typographically
rich.

Smashing eBook #9│Mastering CSS for Web Developers │ 48

Progressive Enhancement

Progressive enhancement means creating a solid page with appropriate
markup for content and adding advanced styling (and perhaps scripting) to
the page for browsers that can handle it. It results in web pages that are
usable by all browsers but that do not look identical in all browsers. Users
of newer, more advanced browsers get to see more cool visual effects and
nice usability enhancements.

The idea of allowing a design to look different in different browsers is not
new. CSS gurus have been preaching this for years because font availability
and rendering, color tone, pixel calculations and other technical factors
have always varied between browsers and platforms. Most Web designers
avoid “pixel perfection” and have accepted the idea of their designs looking
slightly different in different browsers. But progressive enhancement, which
has grown in popularity over the past few years, takes it a step further.
Designs that are progressively enhanced may look more than slightly
different in different browsers; they might look very different.

For example, the tweetCC website has a number of CSS 3 properties that
add attractive visual touches, like drop-shadows behind text, multiple
columns of text and different-colored background “images” (without there
having to be actually different images). These effects are seen to various
extents in different browsers, with old browsers like IE 6 looking the
“plainest.” However, even in IE 6, the text is perfectly readable, and the
design is perfectly usable.

Smashing eBook #9│Mastering CSS for Web Developers │ 49

http://tweetcc.com/
http://tweetcc.com/

tweetCC in Safari.

Smashing eBook #9│Mastering CSS for Web Developers │ 50

http://tweetcc.com/
http://tweetcc.com/

tweetCC in IE 6.

In CSS 3-capable browsers like Safari (top), the tweetCC website shows a
number of visual effects that you can’t see in IE 6 (bottom).

These significant differences between browsers are perfectly okay, not only
because that is the built-in nature of the Web, but because progressive
enhancement brings the following benefits:

• More robust pages
Rather than use the graceful degradation method to create a fully
functional page and then work backwards to make it function in less-

Smashing eBook #9│Mastering CSS for Web Developers │ 51

http://tweetcc.com/
http://tweetcc.com/
http://tweetcc.com/
http://tweetcc.com/

capable browsers, you focus first on creating a solid “base” page that
works everywhere.

• Happier users
You start building the page making sure the basic functionality and
styling is the same for everyone. People with old browsers, mobile
devices and assistive technology are happy because the pages are
clean and reliable and work well. People with the latest and greatest
browsers are happy because they get a rich, polished experience.

• Reduced development time
You don’t have to spend hours trying to get everything to look perfect
and identical in all browsers. Nor do you have to spend much time
reverse-engineering your pages to work in older browsers after you
have completed the fully functional and styled versions (as is the case
with the graceful degradation method).

• Reduced maintenance time
If a new browser or new technology comes out, you can add new
features to what you already have, without altering and possibly
breaking your existing features. You have only one base version of the
page or code to update, rather than multiple versions (which is the case
with graceful degradation).

• More fun
It’s just plain fun to be able to use cool and creative new techniques on
your Web pages, and not have to wait years for old browsers to die off.

Adaptive to Diverse Users

Modern CSS-based Web pages have to accommodate the diverse range of
browsers, devices, screen resolutions, font sizes, assistive technologies and

Smashing eBook #9│Mastering CSS for Web Developers │ 52

other factors that users bring to the table. This concept is also not new but
is growing in importance as Web users become increasingly diverse. For
instance, a few years ago, you could count on almost all of your users
having one of three screen resolutions. Now, users could be viewing your
pages on 10-inch netbooks, 30-inch widescreen monitors or anything in
between, not to mention tiny mobile devices.

In his article “Smart columns with CSS and jQuery” Soh Tanaka describes his
techniques that adapts the layout depending on the current browser window size.

Creating Web designs that work for all users in all scenarios will never be
possible. But the more users you can please, the better: for them, for your
clients and for you. Successful CSS layouts now have to be more flexible
and adaptable than ever before to the increasing variety of ways in which
users browse the Web.

Consider factors such as these when creating CSS layouts:

Smashing eBook #9│Mastering CSS for Web Developers │ 53

http://www.thecounter.com/stats/2006/January/res.php
http://www.thecounter.com/stats/2006/January/res.php
http://www.sohtanaka.com/web-design/smart-columns-w-css-jquery/
http://www.sohtanaka.com/web-design/smart-columns-w-css-jquery/

• Browser
Is the design attractive and usable with the most current and popular
browsers? Is it at least usable with old browsers?

• Platform
Does the design work on PC, Mac and Linux machines?

• Device
Does the design adapt to low-resolution mobile devices? How does it
look on mobile devices that have full resolution (e.g. iPhones)?

• Screen resolution
Does the design stay together at multiple viewport (i.e. window)
widths? Is it attractive and easy to read at different widths? If the
design does adapt to different viewport widths, does it correct for
extremely narrow or wide viewports (e.g. by using the min-width and
max-width properties)?

• Font sizes
Does the design accommodate different default font sizes? Does the
design hold together when the font size is changed on the fly? Is it
attractive and easy to read at different font sizes?

• Color
Does the design make sense and is the content readable in black and
white? Would it work if you are color blind or have poor vision or
cannot detect color contrast?

• JavaScript presence
Does the page work without JavaScript?

Smashing eBook #9│Mastering CSS for Web Developers │ 54

• Image presence
Does the content make sense and is it readable without images (either
background or foreground)?

• Assistive technology/disability
Does the page work well in screen readers? Does the page work well
without a mouse?

This is not a comprehensive list; and even so, you would not be able to
accommodate every one of these variations in your design. But the more
you can account for, the more user-friendly, robust and successful your
website will be.

Modular

Modern websites are no longer collections of static pages. Pieces of content
and design components are reused throughout a website and even shared
between websites, as content management systems (CMS), RSS
aggregation and user-generated content increase in popularity. Modern
design components have to be able to adapt to all of the different places
they will be used and the different types and amount of content they will
contain.

Smashing eBook #9│Mastering CSS for Web Developers │ 55

Object Oriented CSS is Nicole Sulivan’s attempt to create a framework that would
allow developers to write fast, maintainable, standards-based, modular front end
code.

Modular CSS, in a broad sense, is CSS that can be broken down into chunks
that work independently to create design components that can themselves
be reused independently. This might mean separating your style into
multiple sheets, such as layout.css, type.css, and color.css. Or it might mean
creating a collection of universal CSS classes for form layout that you can
apply to any form on your website, rather than have to style each form
individually. CMS’, frameworks, layout grids and other tools all help you
create more modular Web pages.

Smashing eBook #9│Mastering CSS for Web Developers │ 56

http://wiki.github.com/stubbornella/oocss
http://wiki.github.com/stubbornella/oocss

Modular CSS offers these benefits (depending on which techniques and
tools you use):

• Smaller file sizes
When all of the content across your website is styled with only a
handful of CSS classes, rather than an array of CSS IDs that only work
on particular pieces of content on particular pages, your style sheets
will have many fewer redundant lines of code.

• Reduced development time
Using frameworks, standard classes and other modular CSS tools keeps
you from having to re-invent the wheel every time you start a new
website. By using your own or other developers’ tried and true CSS
classes, you spend less time testing and tweaking in different browsers.

• Reduced maintenance time
When your style sheets include broad, reusable classes that work
anywhere on your website, you don’t have to come up with new styles
when you add new content. Also, when your CSS is lean and well
organized, you spend less time tracking down problems in your style
sheets when browser bugs pop up.

• Easier maintenance for others
In addition to making maintenance less time-consuming for you, well-
organized CSS and smartly named classes also make maintenance
easier for developers who weren’t involved in the initial development of
the style sheets. They’ll be able to find what they need and use it more
easily. CMS’ and frameworks also allow people who are not as familiar
with your website to update it easily, without screwing anything up.

Smashing eBook #9│Mastering CSS for Web Developers │ 57

• More design flexibility
Frameworks and layout grids make it easy, for instance, to switch
between different types of layout on different pages or to plug in
different types of content on a single page.

• More consistent design
By reusing the same classes and avoiding location-specific styling, you
ensure that all elements of the same type look the same throughout
the website. CMS’ and frameworks provide even more insurance
against design inconsistency.

Efficient

Modern CSS-based websites should be efficient in two ways:

• Efficient for you to develop

• Efficient for the server and browser to display to users

As Web developers, we can all agree that efficiency on the development
side is a good thing. If you can save time while still producing high-quality
work, then why wouldn’t you adopt more efficient CSS development
practices? But creating pages that perform efficiently for users is sometimes
not given enough attention. Even though connection speeds are getting
faster and faster, page load times are still very important to users. In fact, as
connection speeds increase, users might expect all pages to load very
quickly, so making sure your website can keep up is important. Shaving just
a couple of seconds off the loading time can make a big difference.

We’ve already discussed how modular CSS reduces development and
maintenance time and makes your workflow a lot faster and more efficient.
A myriad of tools are out there to help you write CSS quickly, which we’ll

Smashing eBook #9│Mastering CSS for Web Developers │ 58

http://24ways.org/2008/making-modular-layout-systems
http://24ways.org/2008/making-modular-layout-systems
http://24ways.org/2008/making-modular-layout-systems
http://24ways.org/2008/making-modular-layout-systems

cover in part 2 of this article. You can also streamline your CSS
development process by using many of the new effects offered by CSS 3,
which cut down on your time spent creating graphics and coding usability
enhancements.

Some CSS 3 techniques also improve performance and speed. For instance,
traditional rounded-corner techniques require multiple images and DIVs for
just one box. Using CSS 3 to create rounded corners requires no images,
thus reducing the number of HTTP calls to the server and making the page
load faster. No images also reduces the number of bytes the user has to
download and speeds up page loading. CSS 3 rounded-corners also do not
require multiple nested DIVs, which reduces page file size and speeds up
page loading again. Simply switching to CSS 3 for rounded corners can give
your website a tremendous performance boost, especially if you have many
boxes with rounded corners on each page.

Writing clean CSS that takes advantage of shorthand properties, grouped
selectors and other efficient syntax is of course just as important as ever for
improving performance. Many of the more advanced tricks for making CSS-
based pages load faster are also not new but are increasing in usage and
importance. For instance, the CSS Sprites technique, whereby a single file
holds many small images that are each revealed using the CSS
background-position property, was first described by Dave Shea in
2004 but has been improved and added to a great deal since then. Many
large enterprise websites now rely heavily on the technique to minimize
HTTP requests. And it can improve efficiency for those of us working on
smaller websites, too. CSS compression techniques are also increasingly
common, and many automated tools make compressing and optimizing
your CSS a breeze, as you’ll also learn in part 2 of this article.

Smashing eBook #9│Mastering CSS for Web Developers │ 59

http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-techniques-tools-and-tutorials/
http://www.alistapart.com/articles/sprites/
http://www.alistapart.com/articles/sprites/
http://www.alistapart.com/articles/sprites/
http://www.alistapart.com/articles/sprites/

Rich Typography

Rich typography may seem out of place with the four concepts we have just
covered. But we’re not talking about any particular style of typography or
fonts, but rather the broader concept of creating readable yet unique-
looking text by applying tried and true typographic principles using the
newest technologies. Typography is one of the most rapidly evolving areas
of Web design right now. And boy, does it need to evolve! While Web
designers have had few limits on what they could do graphically with their
designs, their limits with typography have been glaring and frustrating.

Until recently, Web designers were limited to working with the fonts on
their end users’ machines. Image replacement tricks and clever
technologies such as sIFR have opened new possibilities in the past few
years, but none of these is terribly easy to work with. In the past year, we’ve
finally made great strides in what is possible for type on the Web because
of the growing support for CSS 3′s @font-face property, as well as new
easy-to-use technologies and services like Cufón and Typekit.

The @font-face rule allows you to link to a font on your server, called a
“Web font,” just as you link to images. So you are no longer limited to
working with the fonts that most people have installed on their machines.
You can now take advantage of the beautiful, unique fonts that you have
been dying to use.

Smashing eBook #9│Mastering CSS for Web Developers │ 60

http://wiki.novemberborn.net/sifr3/
http://wiki.novemberborn.net/sifr3/
http://cufon.shoqolate.com/generate/
http://cufon.shoqolate.com/generate/
http://blog.typekit.com/
http://blog.typekit.com/

Craigmod

Smashing eBook #9│Mastering CSS for Web Developers │ 61

http://www.teehanlax.com/labs/projects/fontface/
http://www.teehanlax.com/labs/projects/fontface/

Nicewebtype

Smashing eBook #9│Mastering CSS for Web Developers │ 62

http://nicewebtype.com/fonts/museo-and-sans/
http://nicewebtype.com/fonts/museo-and-sans/

The three screenshots above are all examples of what @font-face can do.

The main problem with @font-face, aside from the ever-present issue of
browser compatibility, is that most font licenses—even those of free fonts—
do not allow you to serve the fonts over the Web. That’s where @font-
face services such as Typekit, Fontdeck and Kernest are stepping in. They
work with type foundries to license select fonts for Web design on a
“rental” basis. These subscription-based services let you rent fonts for your
website, giving you a much wider range of fonts to work with, while
avoiding licensing issues.

Smashing eBook #9│Mastering CSS for Web Developers │ 63

http://nicewebtype.com/fonts/museo-and-sans/
http://nicewebtype.com/fonts/museo-and-sans/
http://a.deveria.com/caniuse/#feat=fontface
http://a.deveria.com/caniuse/#feat=fontface
http://blog.typekit.com/
http://blog.typekit.com/
http://fontdeck.com/
http://fontdeck.com/

For A Beautiful Web uses the Typekit font embedding service for the website name,
introductory text and headings.

Ruler of the Interwebs uses the Kernest font embedding service for the website
name and headings.

Smashing eBook #9│Mastering CSS for Web Developers │ 64

http://forabeautifulweb.com/
http://forabeautifulweb.com/
http://blog.typekit.com/
http://blog.typekit.com/
http://ruleroftheinterwebs.blogspot.com/
http://ruleroftheinterwebs.blogspot.com/

We still have a long way to go, but the new possibilities make typography
more important to Web design than ever before. To make your design truly
stand out, use these modern typographic techniques, which we’ll cover in
even greater detail in Part 2.

Summary

We’ve looked at five characteristics of modern CSS websites:

• Progressively enhanced

• Adaptive to diverse users

• Modular

• Efficient

• Typographically rich

In part 2 we’ll go over the techniques and tools that will help you
implement these important characteristics on your CSS-based Web pages.

Smashing eBook #9│Mastering CSS for Web Developers │ 65

Modern CSS Layouts, Part 2: The Essential
Techniques
Zoe Mickley Gillenwater

In part 1, you learned that modern, CSS-based Web sites should be
progressively enhanced, adaptive to diverse users, modular, efficient and
typographically rich. Now that you know what characterizes a modern CSS
Web site, how do you build one? Here are dozens of essential techniques
and tools to learn and use to achieve the characteristics of today’s most
successful CSS-based Web pages.

Just as in the previous article, we’re not going to be talking about design
trends and styles; these styles are always changing. Instead, we’re focusing
on the specific techniques that you need to know to create modern CSS-
based Web pages of any style. For each technique or tool, we’ll indicate
which of the five characteristics it helps meet. To keep this shorter than an
encyclopedia, we’ll also just cover the basics of each technique, then point
you to some useful, hand-picked resources to learn the full details.

CSS3

CSS3, the newest version of CSS that is now being partially supported by
most browsers, is the primary thing you need to know in order to create
modern CSS Web sites, of course. CSS is a styling language, so it’s no
surprise that most of what’s new in CSS3 is all about visual effects. But CSS3
is about more than progressive enhancement and pretty typography. It can
also aid usability by making content easier to read, as well as improve
efficiency in development and page performance.

Smashing eBook #9│Mastering CSS for Web Developers │ 66

There are too many CSS3 techniques to cover in a single article, let alone an
article that isn’t just about CSS3! So, we’ll go through the basics of the most
important or supported CSS3 techniques and point you to some great
resources to learn more in-depth.

CSS3 Visual Effects

Semi-transparent Color

Aids in: progressive enhancement, efficiency

RGBA allows you to specify a color by not only setting the values of red,
green, and blue that it’s comprised of, but also the level of opacity it should
have. An alternative to RGBA is HSLA, which works the same way, but allows
you to set values of hue, saturation, and lightness, instead of values of red,
green, and blue. The article Color in Opera 10 — HSL, RGB and Alpha
Transparency explains how HSLA can be more intuitive to use than RGBA.

Smashing eBook #9│Mastering CSS for Web Developers │ 67

http://www.w3.org/TR/css3-color/#rgba-color
http://www.w3.org/TR/css3-color/#rgba-color
http://www.w3.org/TR/css3-color/#hsla-color
http://www.w3.org/TR/css3-color/#hsla-color
http://dev.opera.com/articles/view/color-in-opera-10-hsl-rgb-and-alpha-transparency/
http://dev.opera.com/articles/view/color-in-opera-10-hsl-rgb-and-alpha-transparency/
http://dev.opera.com/articles/view/color-in-opera-10-hsl-rgb-and-alpha-transparency/
http://dev.opera.com/articles/view/color-in-opera-10-hsl-rgb-and-alpha-transparency/

The 24 Ways Web site makes extensive use of RGBA to layer semi-transparent
boxes and text over each other.

RGBA or HSLA isn’t just about making things look cool; it can also improve
your Web site’s efficiency. You don’t have to take time to make alpha-
transparent PNGs to use as backgrounds, since you can just use a color in
the CSS, and the user agent doesn’t have to download those images when
loading the site.

Styling Backgrounds and Borders

Aids in: progressive enhancement, efficiency

CSS3 offers a whole host of new ways to style backgrounds and borders,
often without having to use images or add extra divs. Most of these new
techniques already have good browser support, and since they’re mainly

Smashing eBook #9│Mastering CSS for Web Developers │ 68

http://www.24ways.org/
http://www.24ways.org/

used for purely cosmetic changes, they’re a good way to get some
progressive enhancement goodness going in your sites right away.

Here are some of the new things CSS3 lets you do with backgrounds:

• Multiple backgrounds on a single element: You can now add more
than one background image to an element by listing each image,
separated by commas, in the background-image property. No more
nesting extra divs just to have more elements to attach background
images onto!

• More control over where backgrounds are placed: The new
background-clip and background-origin properties let you
control if backgrounds are displayed under borders, padding, or just
content, as well as where the origin point for background-position
should be.

• Background sizing: You can scale background images using the new
background-size property. While scaling won’t look good on many
background images, it could be really handy on abstract, grunge-type
backgrounds, where tiling can be difficult and where some image
distortion would be unnoticeable.

• Gradients: While just part of a CSS3 draft spec, Safari, Chrome and
Firefox support declaring multiple color and placement values in the
background-image property to create gradients without images.
This allows the gradients to scale with their container — unlike image
gradients — and eliminates the need for page users to download yet
another image while viewing your site.

Smashing eBook #9│Mastering CSS for Web Developers │ 69

http://www.w3.org/TR/css3-background/#layering
http://www.w3.org/TR/css3-background/#layering
http://www.w3.org/TR/css3-background/#layering
http://www.w3.org/TR/css3-background/#layering
http://www.w3.org/TR/css3-background/#the-background-clip
http://www.w3.org/TR/css3-background/#the-background-clip
http://www.w3.org/TR/css3-background/#the-background-origin
http://www.w3.org/TR/css3-background/#the-background-origin
http://www.w3.org/TR/css3-background/#background-size
http://www.w3.org/TR/css3-background/#background-size
http://dev.w3.org/csswg/css3-images/#gradients-
http://dev.w3.org/csswg/css3-images/#gradients-

CSS3 lets you do the following with borders:

• Rounded corners: Use the border-radius-property to get rounded
corners on divs, buttons, and whatever else your heart desires — all
without using images or JavaScript.

• Images for borders: With CSS 2.1, the only way to create a graphic
border was to fake it with background images, often multiple ones
pieced together on multiple divs. You can now add unique borders
without having to use background images by adding the images to the
borders directly, using the new border-image property, which also
allows you to control how the images scale and tile.

The border-radius property can be used to round corners and even create
circles out of pure CSS, with no images needed. (Stunning CSS3 Web site)

Smashing eBook #9│Mastering CSS for Web Developers │ 70

http://www.w3.org/TR/css3-background/#the-border-radius
http://www.w3.org/TR/css3-background/#the-border-radius
http://www.w3.org/TR/css3-background/#border-images
http://www.w3.org/TR/css3-background/#border-images
http://www.stunningcss3.com/
http://www.stunningcss3.com/

Drop Shadows

Aids in: progressive enhancement, adaptability, efficiency

Drop shadows can provide some visual polish to your design, and now
they’re possible to achieve without images, both on boxes and on text.

The box-shadow property has been temporarily removed from the CSS3
spec, but is supposed to be making its re-appearance soon. In the
meantime, it’s still possible to get image-free drop shadows on boxes in
Firefox and Safari/Chrome using the -moz-box-shadow and -webkit-
box-shadow properties, respectively, and in Opera 10.5 using the regular
box-shadow property with no prefix. In the property, you set the shadow’s
horizontal and vertical offsets from the box, color, and can optionally set
blur radius and/or spread radius.

The Cherry Web site uses drop shadows created with box-shadow on many boxes
and buttons.

Smashing eBook #9│Mastering CSS for Web Developers │ 71

http://www.w3.org/TR/css3-background/#the-box-shadow
http://www.w3.org/TR/css3-background/#the-box-shadow
http://www.becherry.be/
http://www.becherry.be/

The text-shadow property adds drop shadows on — you guessed it —
text. It’s supported by all the major browsers except — you guessed it —
Internet Explorer. This makes it the perfect progressive enhancement
candidate — it’s simply a visual effect, with no harm done if some users
don’t see it. Similarly to box-shadow, it takes a horizontal offset, vertical
offset, blur radius and color.

Using text-shadow keeps you from resorting to Flash or images for your
text. This can speed up the time it takes you to develop the site, as well as
speed up your pages. Avoiding Flash and image text can also aid
accessibility and usability; just make sure your text is still legible with the
drop shadow behind it, so you don’t inadvertently hurt usability instead!

Transforms

Aids in: progressive enhancement, adaptability, efficiency

CSS3 makes it possible to do things like rotate, scale, and skew the objects
in your pages without resorting to images, Flash, or JavaScript. All of these
effects are called “transforms.” They’re supported in Firefox, Safari, Chrome,
and Opera 10.5.

You apply a transform using the transform property, naturally (though for
now you’ll need to use the browser-specific equivalents: -moz-
transform, -webkit-transform, and -o-transform). You can also
use the transform-origin property to specify the point of origin from
which the transform takes place, such as the center or top right corner of
the object.

In the transform property, you specify the type of transform (called
“transform functions”), and then in parentheses write the measurements
needed for that particular transform. For instance, a value of

Smashing eBook #9│Mastering CSS for Web Developers │ 72

http://www.w3.org/TR/css3-text/#text-shadow
http://www.w3.org/TR/css3-text/#text-shadow
http://www.w3.org/TR/css3-3d-transforms/
http://www.w3.org/TR/css3-3d-transforms/

translate(10px, 20px) would move the element 10 pixels to the right
and 20 pixels down from its original location in the flow. Other supported
transform functions are scale, rotate, and skew.

The BeerCamp SXSW 2010 site scales and rotates the sponsor logos on hover.

Animation and Transitions

Aids in: progressive enhancement, efficiency

Animation is now no longer the solely the domain of Flash or JavaScript —
you can now create animation in pure HTML and CSS. Unfortunately, CSS3
animation and transitions do not have very good browser support, but as
with most of the effects we’ve talked about so far, they’re great for adding a
little non-essential flair.

CSS3 transitions are essentially the simplest type of animation. They
smoothly ease the change between one CSS value to another over a

Smashing eBook #9│Mastering CSS for Web Developers │ 73

http://sxsw.beercamp.com/
http://sxsw.beercamp.com/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/

specified duration of time. They’re triggered by changing element states,
such as hovering. They’re supported by Safari, Chrome, and Opera 10.5.

To create a transition, all you have to do is specify which elements you want
to apply the transition to and which CSS properties will transition, using the
transition-property property. You’ll also need to add a
transition-duration value in seconds (“s” is the unit), since the default
time a transition takes is 0 seconds. You can add them both in the
transition shorthand property. You can also specify a delay or a timing
function to more finely tune how the two values switch.

Beyond transitions, full-fledged animations with multiple keyframes are also
possible with CSS3 (but currently only supported in Safari/Chrome). First,
you give the animation a name and define what the animation will do at
different points (keyframes, indicated with percentages) through its
duration. Next, you apply this animation to an element using the
animation-name, animation-duration, and animation-
interation-count properties. You could also set a delay and timing
function, just like with transitions.

CSS3 Usability / Readability Enhancements

Most the CSS3 techniques we’ve gone over so far have been purely
cosmetic effects that aid progressive enhancement. But CSS3 can also be
used to improve the usability of your pages.

Smashing eBook #9│Mastering CSS for Web Developers │ 74

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/

Creating Multiple Columns of Text

Aids in: progressive enhancement, adaptability

Some pieces of text are more readable in narrow, side-by-side columns,
similar to traditional newspaper layout. You can tell the browser to arrange
your text into columns by either defining a width for each column (the
column-width property) or by defining a number of columns (the
column-count property). Other new properties let you control gutters/
gaps, rule lines, breaking between columns and spanning across columns.
(For now, you need to use the browser-specific prefixes of -moz and -
webkit.) This is another one of those techniques that can harm instead of
aid usability if used improperly, as explained in “CSS3 Multi-column layout
considered harmful,” so use it judiciously.

Controlling Text Wrapping and Breaking

Aids in: adaptability

CSS3 gives you more control over how blocks of text and individual words
break and wrap if they’re too long to fit in their containers. Setting word-
wrap to break-word will break a long word and wrap it onto a new line
(particularly handy for long URLs in your text). The text-wrap property
gives you a number of options for where breaks may and may not occur
between words in your text. The CSS2 white-space property has now in
CSS3 become a shorthand property for the new white-space-collapse
and text-wrap properties, giving you more control over what spaces and
line breaks are preserved from your markup to the rendered page. Another
property worth mentioning, even though it’s not currently in the CSS3
specification, is text-overflow, which allows the browser to add an

Smashing eBook #9│Mastering CSS for Web Developers │ 75

http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful/
http://www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful/
http://www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful/
http://www.456bereastreet.com/archive/200509/css3_multicolumn_layout_considered_harmful/
http://www.w3.org/TR/css3-text/#word-wrap
http://www.w3.org/TR/css3-text/#word-wrap
http://www.w3.org/TR/css3-text/#word-wrap
http://www.w3.org/TR/css3-text/#word-wrap
http://www.w3.org/TR/css3-text/#text-wrap
http://www.w3.org/TR/css3-text/#text-wrap
http://www.w3.org/TR/css3-text/#white-space
http://www.w3.org/TR/css3-text/#white-space
http://www.w3.org/TR/css3-text/#white-space-collapse
http://www.w3.org/TR/css3-text/#white-space-collapse

ellipsis character (…) to the end of a long string of text instead of letting it
overflow.

Media Queries

Aids in: adaptability, efficiency

CSS2 let you apply different styles to different media types — screen, print,
and so on. CSS3′s media queries take this a step further by letting you
customize styles based on the user’s viewport width, display aspect ratio,
whether or not his display shows color, and more. For instance, you could
detect the user’s viewport width and change a horizontal nav bar into a
vertical menu on wide viewports, where there is room for an extra column.
Or you could change the colors of your text and backgrounds on non-color
displays.

Smashing eBook #9│Mastering CSS for Web Developers │ 76

http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/

This demo file from Opera uses media queries to rearrange elements and resize
text and images based on viewport size.

Media queries couldn’t come at a better time — there is more variety in the
devices and settings people use to browse the Web than ever before. You
can now optimize your designs more precisely for these variations to
provide a more usable and attractive design, but without having to write
completely separate style sheets, use JavaScript redirects, and other less
efficient development practices.

Improving Efficiency Through CSS3

Many of the visual effect properties of CSS3 that we’ve gone over have a
great bonus in addition to making your design look great: they can improve
efficiency, both in your development process and in the performance of the
pages themselves.

Smashing eBook #9│Mastering CSS for Web Developers │ 77

http://devfiles.myopera.com/articles/1541/mediaqueries-example-basic.html
http://devfiles.myopera.com/articles/1541/mediaqueries-example-basic.html

Any CSS3 property that keeps you from having to create and add extra
images is going to reduce the time it takes you to create new pages as well
as re-skin existing ones. Less images also mean less stuff for the server to
have to send out and less stuff for the users to download, both of which
increase page loading speed.

CSS3 properties that keep you from having to add extra divs or extra
classes can also reduce your development time as well as file size. We’ve
already gone over some great techniques that help with this, but there are
a few more worth mentioning.

The box-sizing Property

Aids in: efficiency

In addition to the div-conserving properties we’ve already talked about,
the box-sizing property can also help limit your div use in certain
situations.

In the traditional W3C box model of CSS 2.1, the value you declare for a
width or height controls the width or height of the content area only, and
then the padding and border are added onto it. (This is called the content-
box model.) If you’ve worked with CSS for a while, you’re probably used to
the content-box box model and don’t really think much about it. But, it can
lead you to add extra divs from time to time. For instance, if you want to
set a box’s width and padding in different units of measurement from each
other, like ems for the width and pixels for the padding, it’s often easiest to
nest another div and apply the padding to this instead, to make sure you
know how much total space the box will take up. In small doses, nesting
additional divs simply to add padding or borders is not a great sin. But in

Smashing eBook #9│Mastering CSS for Web Developers │ 78

http://www.w3.org/TR/css3-ui/#box-sizing
http://www.w3.org/TR/css3-ui/#box-sizing

complicated designs, the number of extra divs can really add up, which
adds to both your development time and the file size of the HTML and CSS.

Setting the new box-sizing property to border-box instead of
content-box solves this problem so you can get rid of all those extra
divs. When a box is using the border-box box model, the browser will
subtract the padding and border from the width of the box instead of
adding it. You always know that the total space the box takes up equals the
width value you’ve declared.

In the traditional box model (bottom image), padding and border are added onto
the declared width. By setting box-sizing to border-box (top image), the
padding and border are subtracted from the declared width.

The box-sizing property has good browser support, with the exception
of IE 6 and IE 7. Unlike the more decorative CSS3 properties, however, lack
of support for box-sizing could cause your entire layout to fall apart.
You’ll have to determine how serious the problem would be in your

Smashing eBook #9│Mastering CSS for Web Developers │ 79

http://a.deveria.com/caniuse/#eat=css3-boxsizing
http://a.deveria.com/caniuse/#eat=css3-boxsizing

particular case, whether it’s worth living with or hacking, or whether you
should avoid using box-sizing for now.

CSS3 Pseudo-Classes and Attribute Selectors

Aids in: progressive enhancement, efficiency, modularity, rich typography

CSS has several really useful selectors that are only now coming into
common use. Many of these are new in CSS3, but others have been around
since CSS2, just not supported by all browsers (read: IE) until recently, and
thus largely ignored. IE still doesn’t support them all, but they can be used
to add non-essential visual effects.

Taking advantage of these newer, more advanced selectors can improve
your efficiency and make your pages more modular because they can
reduce the need for lots of extra classes, divs, and spans to create the
effects you want to see. Some selectors even make certain effects possible
that you can’t do with classes, such as styling the first line of a block of text
differently. These types of visual effects can improve the typography of your
site and aid progressive enhancement.

HTML5

Although this article is focused on modern CSS techniques, you can’t have
great CSS-based Web pages without great markup behind them. Although
HTML5 is still in development, and although debate continues about its
strengths and weaknesses, some Web developers are already using it in
their Web pages. While HTML 4.01 and XHTML 1.0 are still great choices for
the markup of your pages, it’s a good idea to start learning what HTML5
has to offer so you can work with it comfortably in the future and perhaps
start taking advantage of some of its features now. So, here is a brief

Smashing eBook #9│Mastering CSS for Web Developers │ 80

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html

overview of how HTML5 can help with our five modern CSS-based Web
design characteristics (progressive enrichment, adaptive to diverse users,
modular, efficient, typographically rich).

Note: Many of these techniques are not supported in enough browsers yet
to make their benefits really tangible, so think of this section as, perhaps,
“here’s how HTML5 can aid these five characteristics in the future.”

New Structural Markup

Aids: adaptability, modularity, efficiency

HTML5 introduces a number of new semantic elements that can add more
structure to your markup to increase modularity. For instance, inside your
main content div you can have several article elements, each a
standalone chunk of content, and each can have its own header, footer,
and heading hierarchy (h1 through h6). You can further divide up an
article element with section elements, again with their own headers
and footers. Having clearer, more semantic markup makes it easier to
shuffle independent chunks of content around your site if needed, or
syndicate them through RSS on other sites and blogs.

In the future, as user agents build features to take advantage of HTML5,
these new elements could also make pages more adaptable to different
user scenarios. For instance, Web pages or browsers could generate table
of contents based on the richer hierarchy provided by HTML5, to assist
navigation within a page or across a site. Assistive technology like screen
readers could use the elements to help users jump around the page to get
straight to the important content without needing “skip nav” links.

Smashing eBook #9│Mastering CSS for Web Developers │ 81

Although many of these benefits won’t be realized until some unforeseen
time in the future, you can start adding these new elements now, so that as
soon as tools pop up that can take full advantage of them, you’ll be ready.
Even if your browser doesn’t recognize an element, you can still style it —
that’s standard browser behavior. Well, in every browser but IE. Luckily, you
can easily trick IE into styling these elements using a very simple piece of
JavaScript, handily provided by Remy Sharp.

Of course, you usually can’t depend on all your users having JavaScript
enabled, so the very safest and most conservative option is to not use
these new structural elements just yet, but use divs with corresponding
class names as if they were these new elements. For instance, where you
would use an article element, use a div with a class name of “article.”
You can still use the HTML5 doctype — HTML5 pages work fine in IE, as
long as you don’t use the new elements. You can then later convert to the
new HTML5 elements easily if desired, and in the meantime, you can take
advantage of the more detailed HTML5 validators. Also, using these
standardized class names can make updating the styles easier for both you
and others in your team, and having consistent naming conventions across
sites makes it easier for users with special needs to set up user style sheets
that can style certain elements in a needed way.

Reducing JavaScript and Plug-in Dependence

Aids in: adaptability, efficiency

A number of the new elements and features in HTML5 make effects
possible with pure markup that used to be possible only with JavaScript or
various third-party plug-ins, like Flash or Java. By removing the need for
JavaScript and plug-ins, you can make your pages work on a wider variety

Smashing eBook #9│Mastering CSS for Web Developers │ 82

http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://html5.validator.nu/
http://html5.validator.nu/

of devices and for a wider variety of users. You may also make your
development process quicker and more efficient, since you don’t have to
take the time to find the right script or plug-in and get it all set up. Finally,
these techniques may be able to boost the speed of your pages, since extra
files don’t have to be downloaded by the users. (On the other hand, some
may decrease performance, if the built-in browser version is slower than a
third-party version. We’ll have to wait and see how browsers handle each
option now and in the future.)

Some of the features that reduce JavaScript and plug-in dependence are:

• New form elements and attributes. HTML5 offers a bunch of new
input types, such as email, url, and date, that come with built-in
client-side validation without the need for JavaScript. There are also
many new form attributes that can accomplish what JavaScript used to
be required for, like placeholder to add suggestive placeholder text
to a field or autofocus to make the browser jump to a field. The new
input types degrade to regular inputs in browsers that don’t support
them, and the new attributes are just ignored, so it doesn’t hurt
unsupporting browsers to start using them now. Of course, you’ll have
to put in fallback JavaScript for unsupporting browsers, negating the
“no JavaScript” benefits for the time being. (Or, depend on server-side
validation—which you always ought to have in place as a backup
behind client-side validation anyway—to catch the submissions from
unsupporting browsers.) Still, they offer a nice usability boost for users
with the most up to date browsers, so they’re good for progressive
enhancement.

Smashing eBook #9│Mastering CSS for Web Developers │ 83

• The canvas element. The canvas element creates a blank area of the
screen that you can create drawings on with JavaScript. So, it does
require the use of JavaScript, but it removes the need for Flash or Java
plug-ins. It’s supported in every major browser but IE, but you can
make it work in IE easily using the ExplorerCanvas script.

• The video and audio elements. HTML5 can embed video and audio
files directly, just as easily as you would add an image to a page,
without the need for any additional plug-ins.

Some of the new input types in HTML5 will bring up widgets, such as the calendar
date picker seen with the datetime input type in Opera, without needing any
JavaScript. (HTML5 input types test page)

Smashing eBook #9│Mastering CSS for Web Developers │ 84

http://code.google.com/p/explorercanvas/
http://code.google.com/p/explorercanvas/
http://dev.w3.org/html5/spec/Overview.html#video
http://dev.w3.org/html5/spec/Overview.html#video
http://dev.w3.org/html5/spec/Overview.html#audio
http://dev.w3.org/html5/spec/Overview.html#audio
http://www.456bereastreet.com/lab/html5-input-types/
http://www.456bereastreet.com/lab/html5-input-types/

IE Filtering

Aids in: progressive enhancement

IE 6 doesn’t seem to be going away anytime soon, so if you want to really
make sure your pages are progressively enhanced, you’re going to have to
learn how to handle it. Beyond ignoring the problem or blocking IE 6
altogether, there are a number of stances you can take:

• Use conditional comments to fix IE’s bugs: You can create separate
style sheets for each version of IE you’re having problems with and
make sure only that version sees its sheet. The IE sheets contain only a
few rules with hacks and workarounds that the browser needs.

• Hide all main styles from IE and feed it very minimal styles only:
This is another conditional comment method, but instead of fixing the
bugs, it takes the approach of hiding all the complex CSS from IE 6 to
begin with, and only feeding it very simple CSS to style text and the
like. Andy Clarke calls this Universal Internet Explorer 6 CSS.

• Use JavaScript to “fix” IE: There are a number of scripts out there that
can make IE 6 emulate CSS3, alpha-transparent PNGs, and other things
that IE 6 doesn’t support. Some of the most popular are ie7-js,
Modernizr, and ie-css3.js.

Flexible Layouts

Aids in: adaptability

One of the main ways you can make your sites adaptable to your users’
preferences is to create flexible instead of fixed-width layouts. We’ve
already gone over how media queries can make your pages more

Smashing eBook #9│Mastering CSS for Web Developers │ 85

http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
http://forabeautifulweb.com/blog/about/universal_internet_explorer_6_css/
http://forabeautifulweb.com/blog/about/universal_internet_explorer_6_css/
http://code.google.com/p/ie7-js/
http://code.google.com/p/ie7-js/
http://www.modernizr.com/
http://www.modernizr.com/
http://www.keithclark.co.uk/labs/ie-css3/
http://www.keithclark.co.uk/labs/ie-css3/

adaptable to different viewport widths, but creating liquid, elastic, or
resolution-dependent layouts can be used instead of or in conjunction with
media queries to further optimize the design for as large a segment of your
users as possible.

• Liquid layouts: Monitor sizes and screen resolutions cover a much
larger range than they used to, and mobile devices like the iPhone and
iPad let the user switch between portrait and landscape mode,
changing their viewport width on the fly. Liquid layouts, also called
fluid, change in width based on the user’s viewport (e.g., window) width
so that the entire design always fits on the screen without horizontal
scrollbars appearing. The min-width and max-width properties and/
or media queries can and should be used to keep the design from
getting too stretched out or too squished at extreme dimensions.

• Elastic layouts: If you want to optimize for a particular number of text
characters per line, you can use an elastic layout, which changes in
width based on the user’s text size. Again, you can use min- and max-
width and/or media queries to limit the degree of elasticity.

• Resolution-dependent layouts: This type of layout, also called
adaptive layout, is similar to media queries, but uses JavaScript to
switch between different style sheets and rearrange boxes to
accommodate different viewport widths.

Layout Grids

Aids in: modularity, efficiency

Designing on a grid of (usually invisible) consistent horizontal and vertical
lines is not new — it goes back for centuries — but its application to Web

Smashing eBook #9│Mastering CSS for Web Developers │ 86

design has gained in popularity in recent years. And for good reason: a
layout grid can create visual rhythm to guide the user’s eye, make the
design look more clean and ordered, and enforce design consistency.

Grids can also make your designs more modular and your development
more efficient because they create a known, consistent structure into which
you can easily drop new elements and rearrange existing ones without as
much thought and time as it would take in a non-grid layout. For instance,
all of your elements must be as wide as your grid’s column measurement,
or some multiple of it, so you can easily move an element to another spot
on the page or to another page and be assured that it will fit and look
consistent with the rest of the design. At worst, you’ll need to adjust the
other elements’ widths around it to a different multiple of the column
measurements to get the new element to fit, but even this is not too work-
intensive, as there is only a handful of pre-determined widths that any
element can have.

Smashing eBook #9│Mastering CSS for Web Developers │ 87

All of the content of The New York Times site falls into a grid of five columns, plus
a thin column on the left for navigation.

Efficient CSS Development Practices

Aids in: modularity, efficiency

Layout grids and many of the CSS3 techniques we’ve gone over have the
side benefit of making your CSS more modular and helping you write and
maintain CSS more efficiently. There are also a few CSS development
practices that you can use with any of the techniques we’ve already covered
in order to reduce the time it takes you to write the CSS for those
techniques in the first place, as well as save you time reusing components
in your pages.

Smashing eBook #9│Mastering CSS for Web Developers │ 88

http://www.nytimes.com/
http://www.nytimes.com/

CSS Frameworks

A CSS framework is a library of styles that act as building blocks to create
the standard pieces you might need in your site. While CSS frameworks
differ greatly in depth and breadth, most popular, publicly-distributed
frameworks contain some sort of layout grid, as well as standard styles for
text, navigation, forms, images, and more. It’s a good idea to create your
own CSS framework, perhaps based on one of the most popular ones; it
can be as simple as standardizing the IDs and classes you tend to use on
every project and creating a starter style sheet for yourself.

Good CSS frameworks provide you with a solid starting point for your
designs, cutting down your time spent developing, testing, tweaking, and
updating. They can also reduce the time others (your team members or
those who inherit your sites) spend modifying your CSS, as everyone is
working from a standard set of conventions. Frameworks can make your
designs more modular by giving you a standard set of classes that can be
reused from page to page easily, breaking the styles down into separate
sheets that can be applied independently to pages on an as-needed basis,
or allowing you to plug in various types of content without needing to
invent new classes for it.

But, frameworks have their share of problems too. For instance, publicly-
distributed (as opposed to your own private) frameworks tend to have large
file sizes, as they need to work for any type of site with any type of content;
if they’re separated into multiple sheets, they can further damage page
speed since every HTTP request takes time. We won’t get into the full list of
pros and cons here, but there are ways to work around many of them, so
check out the following articles for the details.

Smashing eBook #9│Mastering CSS for Web Developers │ 89

Object-oriented CSS (OOCSS)

Nicole Sullivan coined the term object-oriented CSS (OOCSS) for her
method of creating self-contained chunks of HTML (modules) that can be
reused anywhere in the page or site and that any class can be applied to.
Some of the main principles of OOCSS are:

• using primarily classes instead of IDs

• creating default classes with multiple, more specific classes added on
to elements

• avoiding dependent selectors and class names that are location-
specific

• leaving dimensions off module styles so the modules can be moved
anywhere and fit

• styling containers separately from content

OOCSS aims to make your CSS development more efficient, as well as to
make the CSS itself more modular and less redundant, which reduces file
sizes and loading speed.

CSS Generation

When it comes to writing CSS quickly, what could be quicker than having
some piece of software write it for you? Now, please don’t think that I’m
advocating not learning CSS and having a tool write a complete style sheet
for you. That is a bad, bad idea. But, there are some quality tools out there
that can give you a headstart with your CSS, just to shave a little time off
the front of your CSS development process. Most good CSS generators are

Smashing eBook #9│Mastering CSS for Web Developers │ 90

http://www.stubbornella.org/content/2009/02/28/object-oriented-css-grids-on-github/
http://www.stubbornella.org/content/2009/02/28/object-oriented-css-grids-on-github/

focused on creating styles for one particular area of your design, such as
the layout structure or type styles, not the whole style sheet.

There are far too many tools to link to individually here, so remember when
you’re finding your own tools to carefully review the CSS it outputs. If it’s
invalid, bloated, or just plain ugly, don’t use the tool!

CSS Performance

Aids in: efficiency

Your efficiently created CSS-based Web sites also need to perform as
efficiently as possible for your users. Many of the CSS3 techniques we’ve
covered can reduce file sizes and HTTP requests to increase the speed of
your pages. There are some additional CSS techniques you can use to boost
performance.

CSS Compression

Writing clean CSS that takes advantage of shorthand properties, grouped
selectors, and other efficient syntax is nothing new, but it remains very
important for improving performance. There are also tricks some CSS
developers employ to further reduce CSS file sizes, such as writing each rule
on one line to reduce all the line breaks. Although you can do some of this
manually, there are a number of tools that can optimize and compress your
CSS for you.

CSS Sprites

CSS Sprites is a CSS technique named by Dave Shea of combining many (or
all) of your site’s images into one big master image and then using

Smashing eBook #9│Mastering CSS for Web Developers │ 91

http://www.alistapart.com/articles/sprites
http://www.alistapart.com/articles/sprites

background-position to shift the image around to show only a single
image at a time. This greatly improves your pages’ performance because it
greatly reduces the number of HTTP requests to your server. This is not a
new technique, but it’s becoming increasingly important in modern CSS-
based Web sites as page performance becomes more and more important.

The Apple site uses CSS sprites for various states of its navigation bar.

Font Embedding and Replacement

Aids in: progressive enhancement, rich typography

Until recently, Web designers were limited to working with the fonts on
their end users’ machines. We now have a number of techniques and
technologies that make unique but still readable and accessible text
possible.

The @font-face Rule

The @font-face rule, part of CSS3, allows you to link to a font on your
server, called a “web font,” just as you can link to images, and displays text
on your site in this font. You can now make use of your beautiful, unique
fonts instead of just the fonts that most people already have installed on

Smashing eBook #9│Mastering CSS for Web Developers │ 92

http://www.apple.com/
http://www.apple.com/
http://www.w3.org/TR/css3-fonts/#the-font-face-rule
http://www.w3.org/TR/css3-fonts/#the-font-face-rule

their machines. Fortunately, @font-face has good browser support. But
alas, it’s not as simple as that. Different browsers support different types of
fonts, different platforms and browsers anti-alias very differently, you can
get a flash of unstyled text before the font loads, your font may not allow
@font-face embedding in its license, and on and on it goes.

Sam Howat’s site uses @font-face to get attractive non-standard fonts into the
headings and intro blocks of text.

Smashing eBook #9│Mastering CSS for Web Developers │ 93

http://samhowat.com/
http://samhowat.com/

Blue Sky Resumes uses @font-face extensively in headings, feature copy, and the
main nav bar of the site.

Other Font Embedding and Replacement Techniques

If the pure CSS solution of @font-face is making your head spin, you can
use a font embedding service or font replacement technique.

• Font embedding services: There are a number of third-party font
embedding services available that make use of @font-face, such as
Typekit, but make implementation easier by helping you work around
the browser differences. They also all get around the legal issue of font
embedding by providing you with a set of fonts that are licensed for
this type of use and impossible or difficult for end users to steal. Most
of these services are not free, but some have free options that give you
access to a limited set of fonts.

Smashing eBook #9│Mastering CSS for Web Developers │ 94

http://www.blueskyresumes.com/
http://www.blueskyresumes.com/
http://typekit.com/
http://typekit.com/

• Font replacement techniques: These free techniques, such as sIFR and
Cufón, do not make use of @font-face, but instead use scripting
and/or Flash to display fonts that are not on the user’s machine. None
of them directly address the licensing issue, but none of them link
directly to ready-to-use fonts, so copyright legality is not clear-cut.

Conclusion

You’re now equipped with the basic knowledge and a slew of links to create
modern CSS-based Web pages that are progressively enriched, adaptive to
diverse users, modular, efficient, and typographically rich. Go out and create
great, modern work!

Smashing eBook #9│Mastering CSS for Web Developers │ 95

http://wiki.novemberborn.net/sifr3/
http://wiki.novemberborn.net/sifr3/
http://cufon.shoqolate.com/generate/
http://cufon.shoqolate.com/generate/

How to Use CSS3 Pseudo-Classes
Richard Shepherd

CSS3 is a wonderful thing, but it’s easy to be bamboozled by the transforms
and animations (many of which are vendor-specific) and forget about the
nuts-and-bolts selectors that have also been added to the specification. A
number of powerful new pseudo-selectors (16 are listed in the latest W3C
spec) enable us to select elements based on a range of new criteria.

Before we look at these new CSS3 pseudo-classes, let’s briefly delve into
the dusty past of the Web and chart the journey of these often
misunderstood selectors.

A Brief History Of Pseudo-Classes

When the CSS1 spec was completed back in 1996, a few pseudo-selectors
were included, many of which you probably use almost every day. For
example:

• :link

• :visited

• :hover

• :active

Each of these states can be applied to an element, usually <a>, after which
comes the name of the pseudo-class. It’s amazing to think that these
pseudo-classes arrived on the scene before HTML4 was published by the
W3C a year later in December 1997.

Smashing eBook #9│Mastering CSS for Web Developers │ 96

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/

CSS2 Arrives

Hot on the heels of CSS1 was CSS2, whose recommended spec was
published just two years later in May 1998. Along with exciting things like
positioning were new pseudo-classes: :first-child and :lang().

:lang
There are a couple of ways to indicate the language of a document, and if
you’re using HTML5, it’ll likely be by putting <html lang="en"> just after
the doc type (specifying your local language, of course). You can now
use :lang(en) to style elements on a page, which is useful when the
language changes dynamically.

:first-child
You may have already used :first-child in your documents. It is often
used to add or remove a top border on the first element in a list. Strange,
then, that it wasn’t accompanied by :last-child; we had to wait until
CSS3 was proposed before it could meet its brother.

Why Use Pseudo-Classes?

What makes pseudo-classes so useful is that they allow you to style content
dynamically. In the <a> example above, we are able to describe how links
are styled when the user interacts with them. As we’ll see, the new pseudo-
classes allow us to dynamically style content based on its position in the
document or its state.

Sixteen new pseudo-classes have been introduced as part of the W3C’s CSS
Proposed Recommendation, and they are broken down into four groups:
structural pseudo-classes, pseudo-classes for the states of UI elements, a
target pseudo-class and a negation pseudo-class.

Smashing eBook #9│Mastering CSS for Web Developers │ 97

http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/CSS2/
http://www.w3.org/html/logo/
http://www.w3.org/html/logo/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/

Let’s now run through the 16 new pseudo-selectors one at a time and see
how each is used. I’ll use the same notation for naming classes that the
W3C uses, where E is the element, n is a number and s is a selector.

Sample Code

For many of these new selectors, I’ll also refer to some sample code so that
you can see what effect the CSS has. We’ll take a regular form and make it
suitable for an iPhone using our new CSS3 pseudo-classes.

Note that we could arguably use ID and class selectors for much of this
form, but it’s a great opportunity to take our new pseudo-classes out for a
spin and demonstrate how you might use them in a real-world example.
Here’s the HTML:

1 <form>

2 <hgroup>

3 <h1>Awesome Widgets</h1>

4 <h2>All the cool kids have got one :)</h2>

5 </hgroup>

6 <fieldset id="email">

7 <legend>Where do we send your receipt?</legend>

8 <label for="email">Email Address</label>

9 <input type="email" name="email" placeholder="Email

Address" />

10 </fieldset>

11

12 <fieldset id="details">

13 <legend>Personal Details</legend>

14 <select name="title" id="field_title">

15 <option value="" selected="selected">Title</option>

Smashing eBook #9│Mastering CSS for Web Developers │ 98

16 <option value="Mr">Mr</option>

17 <option value="Mrs">Mrs</option>

18 <option value="Miss">Miss</option>

19 </select>

20

21 <label for="firstname">First Name</label>

22 <input name="firstname" placeholder="First Name" />

23

24 <label for="initial">Initial</label>

25 <input name="initial" placeholder="Initial" size="3" /

>

26

27 <label for="surname">Surname</label>

28 <input name="surname" placeholder="Surname" />

29 </fieldset>

30

31 <fieldset id="payment">

32 <legend>Payment Details</legend>

33

34 <label for="cardname">Name on card</label>

35 <input name="cardname" placeholder="Name on card" />

36

37 <label for"cardnumber">Card number</label>

38 <input name="cardnumber" placeholder="Card number" />

39

40 <select name="cardType" id="field_cardType">

41 <option value="" selected="selected">Select Card

Type</option>

42 <option value="1">Visa</option>

43 <option value="2">American Express</option>

44 <option value="3">MasterCard</option>

Smashing eBook #9│Mastering CSS for Web Developers │ 99

45 </select>

46

47 <label for="cardExpiryMonth">Expiry Date</label>

48 <select id="field_cardExpiryMonth"

name="cardExpiryMonth">

49 <option selected="selected" value="mm">MM</option>

50 <option value="01">01</option>

51 <option value="02">02</option>

52 <option value="03">03</option>

53 <option value="04">04</option>

54 <option value="05">05</option>

55 <option value="06">06</option>

56 <option value="07">07</option>

57 <option value="08">08</option>

58 <option value="09">09</option>

59 <option value="10">10</option>

60 <option value="11">11</option>

61 <option value="12">12</option>

62 </select> /

63 <select id="field_cardExpiryYear"

name="cardExpiryYear">

64 <option value="yyyy">YYYY</option>

65 <option value="2011">11</option>

66 <option value="2012">12</option>

67 <option value="2013">13</option>

68 <option value="2014">14</option>

69 <option value="2015">15</option>

70 <option value="2016">16</option>

71 <option value="2017">17</option>

72 <option value="2018">18</option>

73 <option value="2019">19</option>

Smashing eBook #9│Mastering CSS for Web Developers │ 100

74 </select>

75

76 <label for"securitycode">Security code</label>

77 <input name="securitycode" type="number"

placeholder="Security code" size="3" />

78

79 <p>Would you like Insurance?</p>

80 <input type="radio" name="Insurance"

id="insuranceYes" />

81 <label for="insuranceYes">Yes Please!</label>

82 <input type="radio" name="Insurance"

id="insuranceNo" />

83 <label for="insuranceNo">No thanks</label>

84

85 </fieldset>

86

87 <fieldset id="submit">

88 <button type="submit" name="Submit" disabled>Here I

come!</button>

89 </fieldset>

90 </form>

Smashing eBook #9│Mastering CSS for Web Developers │ 101

Our form, before and after.

1. Structural Pseudo-Classes

According to the W3C, structural pseudo-classes do the following:

… permit selection based on extra information that lies in the document
tree but cannot be represented by other simple selectors or combinators.

What this means is that we have selectors that have been turbo-charged to
dynamically select content based on its position in the document. So let’s
start at the beginning of the document, with :root.

Smashing eBook #9│Mastering CSS for Web Developers │ 102

E:root

The :root pseudo-class selects the root element on the page. Ninety-nine
times out of a hundred, this will be the <html> element. For example:

1 :root { background-color: #fcfcfc; }

It’s worth noting that you could style the <html> element instead, which is
perhaps a little more descriptive:

1 html { background-color: #fcfcfc; }

iPhone Form Example
Let’s move over to our sample code and give the document some basic text
and background styles:

1 :root {

2 color: #fff;

3 text-shadow: 0 -1px 0 rgba(0,0,0,0.8);

4 background: url(…/images/background.png) no-repeat

#282826; }

E:nth-child(n)

The :nth-child() selector might require a bit of experimentation to fully
understand. The easiest implementation is to use the keywords odd or
even, which are useful when displaying data that consists of rows or
columns. For example, we could use the following:

1 ul li:nth-child(odd) {

2 background-color: #666;

3 color: #fff; }

Smashing eBook #9│Mastering CSS for Web Developers │ 103

This would highlight every other row in an unordered list. You might find
this technique extremely handy when using tables. For example:

1 table tr:nth-child(even) { … }

The :nth-child selector can be much more specific and flexible, though.
You could select only the third element from a list, like so:

1 li:nth-child(3) { … }

Note that n does not start at zero, as it might in an array. The first element
is :nth-child(1), the second is :nth-child(2) and so on.

We can also use some simple algebra to make things even more exciting.
Consider the following:

1 li:nth-child(2n) { … }

Whenever we use n in this way, it stands for all positive integers (until the
document runs out of elements to select!). In this instance, it would select
the following list items:

• Nothing (2 × 0)

• 2nd element (2 × 1)

• 4th element (2 × 2)

• 6th element (2 × 3)

• 8th element (2 × 4)

This actually gives us the same thing as nth-child(even). So, let’s mix
things up a bit:

1 li:nth-child(5n) { … }

Smashing eBook #9│Mastering CSS for Web Developers │ 104

This gives us:

• Nothing (5 × 0)

• 5th element (5 × 1)

• 10th element (5 × 2)

• 15th element (5 × 3)

• 20th element (5 × 4)

• etc.

Perhaps this would be useful for long lists or tables, perhaps not. We can
also add and subtract numbers in this equation:

1 li:nth-child(4n + 1) { … }

This gives us:

• 1st element ((4 × 0) + 1)

• 5th element ((4 × 1) + 1)

• 9th element ((4 × 2) + 1)

• 13th element ((4 × 3) + 1)

• 17th element ((4 × 4) + 1)

• etc.

SitePoint points out an interesting quirk here. If you set n as negative, you’ll
be able to select the first x number of items like so:

1 li:nth-child(-n + x) { … }

Smashing eBook #9│Mastering CSS for Web Developers │ 105

http://reference.sitepoint.com/css/understandingnthchildexpressions
http://reference.sitepoint.com/css/understandingnthchildexpressions

Let’s say you want to select the first five items in a list. Here’s the CSS:

1 li:nth-child(-n + 5) { … }

This gives us:

• 5th element (-0 + 5)

• 4th element (-1 + 5)

• 3rd element (-2 + 5)

• 2nd element (-3 + 5)

• 1st element (-4 + 5)

• Nothing (-5 + 5)

• Nothing (-6 + 5)

• etc.

If you’re listing data in order of popularity, then highlighting, say, the top 10
entries might be useful.

WebDesign & Such has created a demo of zebra striping, which is a perfect
example of how you might use nth-child in practice.

Smashing eBook #9│Mastering CSS for Web Developers │ 106

http://webdesignandsuch.com/add-zebra-striping-to-a-table-with-css3/
http://webdesignandsuch.com/add-zebra-striping-to-a-table-with-css3/
http://webdesignandsuch.com/posts/zebra-striping/index.html
http://webdesignandsuch.com/posts/zebra-striping/index.html

Zebra striping a table with CSS3.

If none of your tables need styling, then you could do what Webvisionary
Awards has done and use :nth-child to style alternating sections of its
website. Here’s the CSS:

1 section > section:nth-child(even) {

2 background:rgba(255,255,255,.1)

3 url("../images/hr-damaged2.png") 0 bottom no-repeat;

4 }

The effect is subtle on the website, but it adds a layer of detail that would
be missed in older browsers.

Smashing eBook #9│Mastering CSS for Web Developers │ 107

http://webvisionaryawards.com/
http://webvisionaryawards.com/
http://webvisionaryawards.com/
http://webvisionaryawards.com/

The :nth-child selectors in action on Webvisionary Awards.

iPhone Form Example
We could use :nth-child in a few places in our iPhone form example,
but let’s focus on one. We want to hide the labels for the first three fieldsets
from view and use the placeholder text instead. Here’s the CSS:

1 form:nth-child(-n+3) label { display: none; }

Here, we’re looking for the first three children of the <form> element
(which are all fieldsets in our code) and then selecting the label. We then
hide these labels with display: none;.

Smashing eBook #9│Mastering CSS for Web Developers │ 108

E:nth-last-child(n)

Not content with confusing us all with the :nth-child() pseudo-class,
the clever folks over at the W3C have also given us :nth-last-
child(n). It operates much like :nth-child() except in reverse,
counting from the last item in the selection.

1 li:nth-last-child(1) { … }

The above will select the last element in a list, whereas the following will
select the penultimate element:

1 li:nth-last-child(2) { … }

Of course, you could create other rules, like this one:

1 li:nth-last-child(2n+1) { … }

But you would more likely want to use the following to select the last five
elements of a list (based on the logic discussed above):

1 li:nth-last-child(-n+5) { … }

If this still doesn’t make much sense, Lea Verou has created a useful CSS3
structural pseudo-class selector tester, which is definitely worth checking
out.

Smashing eBook #9│Mastering CSS for Web Developers │ 109

http://leaverou.me/
http://leaverou.me/
http://leaverou.me/demos/nth.html
http://leaverou.me/demos/nth.html
http://leaverou.me/demos/nth.html
http://leaverou.me/demos/nth.html

CSS3 structural pseudo-class selector tester.

iPhone Form Example
We can use :nth-last-child in our example to add rounded corners to
our input for the “Card number.” Here’s our CSS, which is overly specific but
gives you an idea of how we can chain pseudo-selectors together:

1 fieldset:nth-last-child(2) input:nth-last-of-type(3) {

2 border-radius: 10px; }

We first grab the penultimate fieldset and select the input that is third from
last (in this case, our “Card number” input). We then add a border-
radius.

Smashing eBook #9│Mastering CSS for Web Developers │ 110

:nth-of-type(n)

Now we’ll get even more specific and apply styles only to particular types of
element. For example, let’s say you wanted to style the first paragraph in an
article with a larger font. Here’s the CSS:

1 article p:nth-of-type(1) { font-size: 1.5em; }

Perhaps you want to align every other image in an article to the right, and
the others to the left. We can use keywords to control this:

1 article img:nth-of-type(odd) { float: right; }

2 article img:nth-of-type(even) { float: left; }

As with :nth-child() and :nth-last-child(), you can use algebraic
expressions:

1 article p:nth-of-type(2n+2) { … }

2 article p:nth-of-type(-n+1) { … }

It’s worth remembering that if you need to get this specific about targeting
elements, then using descriptive class names instead might be more useful.

Simon Foster has created a beautiful infographic about his 45 RPM record
collection, and he uses :nth-of-type to style some of the data. Here’s a
snippet from the CSS, which assigns a different background to each genre
type:

1 ul#genre li:nth-of-type(1) {

2 width:32.9%;

3 background:url(images/orangenoise.jpg);

4 }

5 ul#genre li:nth-of-type(2) {

Smashing eBook #9│Mastering CSS for Web Developers │ 111

http://www.fortherecord.simonfosterdesign.com/
http://www.fortherecord.simonfosterdesign.com/
http://www.fortherecord.simonfosterdesign.com/
http://www.fortherecord.simonfosterdesign.com/

6 width:15.2%;

7 background:url(images/bluenoise.jpg);

8 }

9 ul#genre li:nth-of-type(3) {

10 width:13.1%;

11 background:url(images/greennoise.jpg);

12 }

And here’s what it looks like on his website:

The :nth-of-type selectors on “For the Record.”

Smashing eBook #9│Mastering CSS for Web Developers │ 112

iPhone Form Example
Let’s say we want every second input element to have rounded corners on
the bottom. We can achieve this with CSS:

1 input:nth-of-type(even) {

2 border-bottom-left-radius: 10px;

3 border-bottom-right-radius: 10px; }

In our example, we want to apply this only to the fieldset for payment,
because the fieldset for personal details has three text inputs. We’ll also get
a bit tricky and make sure that we don’t select any of the radio inputs.
Here’s the final CSS:

1 #payment input:nth-of-type(even):not([type=radio]) {

2 border-bottom-left-radius: 10px;

3 border-bottom-right-radius: 10px;

4 border-bottom: 1px solid #999;

5 margin-bottom: 10px; }

We’ll explain :not later in this article.

:nth-last-of-type(n)

Hopefully, by now you see where this is going: :nth-last-of-type()
starts at the end of the selected elements and works backwards.

To select the last paragraph in an article, you would use this:

1 article p:nth-last-of-type(1) { … }

You might want to choose this selector instead of :last-child if your
articles don’t always end with paragraphs.

Smashing eBook #9│Mastering CSS for Web Developers │ 113

:first-of-type and :last-of-type

If :nth-of-type() and :nth-last-of-type() are too specific for
your purposes, then you could use a couple of simplified selectors. For
example, instead of this…

1 article p:nth-of-type(1) {

2 font-size: 1.5em; }

… we could just use this:

1 article p:first-of-type {

2 font-size: 1.5em; }

As you’d expect, :last-of-type works in exactly the same way but from
the last element selected.

iPhone Form Example
We can use both :first-of-type and :last-of-type in our iPhone
example, particularly when styling the rounded corners. Here’s the CSS:

1 fieldset input:first-of-type:not([type=radio]) {

2 border-top-left-radius: 10px;

3 border-top-right-radius: 10px; }

4

5 fieldset input:last-of-type:not([type=radio]) {

6 border-bottom-left-radius: 10px;

7 border-bottom-right-radius: 10px; }

The first line of CSS adds a top rounded border to all :first-of-type
inputs in a fieldset that aren’t radio buttons. The second line adds the
bottom rounded border to the last input element in a fieldset.

Smashing eBook #9│Mastering CSS for Web Developers │ 114

:only-of-type

There’s one more type selector to look at: :only-of-type(). This is
useful for selecting elements that are the only one of their kind in their
parent element.

For example, consider the difference between this CSS selector…

1 p {

2 font-size: 18px; }

… and this one:

1 p:only-of-type {

2 font-size: 18px; }

The first selector will style every paragraph element on the page. The
second element will grab a paragraph that is the only paragraph in its
parent.

This could be handy when you are styling content or data that has been
dynamically outputted from a database and the query returns only one
result.

Devsnippet has created a demo in which single images are styled differently
from multiple images.

Smashing eBook #9│Mastering CSS for Web Developers │ 115

http://devsnippets.com/article/5-advanced-css-pseudo-class.html
http://devsnippets.com/article/5-advanced-css-pseudo-class.html
http://www.devsnippets.com/img/advanced-css/only-type.html
http://www.devsnippets.com/img/advanced-css/only-type.html

Devsnippet’s demo for :only-of-type.

iPhone Form Example
In the case of our iPhone example, we can make sure that all inputs that are
the only children of a fieldset have rounded corners on both the top and
bottom. The CSS would be:

1 fieldset input:only-of-type {

2 border-radius: 10px; }

Smashing eBook #9│Mastering CSS for Web Developers │ 116

http://media.smashingmagazine.com/cdn_smash/wp-content/uploads/2011/03/only-of-type-Pseudo-Class.png
http://media.smashingmagazine.com/cdn_smash/wp-content/uploads/2011/03/only-of-type-Pseudo-Class.png

:last-child

It’s a little strange that :first-child was part of the CSS2 spec but that
its partner in crime, :last-child, didn’t appear until CSS3. It takes no
expressions or keywords here; it simply selects the last child of its parent
element. For example:

1 li {

2 border-bottom: 1px solid #ccc; }

3

4 li:last-child {

5 border-bottom: none; }

This is a useful way to remove bottom borders from lists. You’ll see this
technique quite often in WordPress widgets.

Rachel Andrew takes a more detailed look at :last-child and other CSS
pseudo-selectors in her 24 Ways article “Cleaner Code With CSS3
Selectors.” Rachel shows us how to use this selector to create a well-
formatted image gallery without additional classes.

Smashing eBook #9│Mastering CSS for Web Developers │ 117

http://24ways.org/2009/cleaner-code-with-css3-selectors
http://24ways.org/2009/cleaner-code-with-css3-selectors
http://24ways.org/2009/cleaner-code-with-css3-selectors
http://24ways.org/2009/cleaner-code-with-css3-selectors

The CSS for :last-child in action, courtesy of Rachel Andrew.

:only-child

If an element is the only child of its parent, then you can select it
with :only-child. Unlike with :only-of-type, it doesn’t matter what
type of element it is. For example:

1 li:only-child { … }

We could use this to select list elements that are the only list elements in
their or parent.

Smashing eBook #9│Mastering CSS for Web Developers │ 118

:empty

Finally, in structural pseudo-classes, we have :empty. Not surprisingly, this
selects only elements that have no children and no content. Again, this
might be useful when dealing with dynamic content outputted from a
database.

1 #results:empty {

2 background-color: #fcc; }

You might use the above to draw the user’s attention to an empty search
results section.

2. The Target Pseudo-Class

:target

This is one of my favourite pseudo-classes, because it allows us to style
elements on the page based on the URL. If the URL has an identifier (that
follows an #), then the :target pseudo-class will style the element that
shares the ID with the identifier. Take a URL that looks like this:

http://www.example.com/css3-pseudo-selectors#summary

The section with the id summary can now be styled like so:

1 :target {

2 background-color: #fcc; }

This is a great way to style elements on pages that have been linked to
from external content. You could also use it with internal anchors to
highlight content that users have skipped to.

Smashing eBook #9│Mastering CSS for Web Developers │ 119

Perhaps the most impressive use of :target I’ve seen is Corey Mwamba’s
Scrolling Site of Green. Corey uses some creative CSS3 and the :target
pseudo-class to create animated tabbed navigation. The demo contains
some clever use of CSS3, illustrating how pseudo-classes are often best
used in combination with other CSS selectors.

Corey’s Scrolling Site of Green.

There’s also an interesting example over at Web Designer Notebook. In
it, :target and Webkit animations are used to highlight blocks of text in
target divs. Chris Coyier also creates a :target-based tabbing system at
CSS-Tricks.

iPhone Form Example
As you’ll see on my demo page, I’ve added a navigation bar at the top that
skips down to different sections of the form. We can highlight any section
the user jumps to with the following CSS:

Smashing eBook #9│Mastering CSS for Web Developers │ 120

http://dev.opera.com/articles/view/css3-target-based-interfaces/
http://dev.opera.com/articles/view/css3-target-based-interfaces/
http://dev.opera.com/articles/view/css3-target-based-interfaces/
http://dev.opera.com/articles/view/css3-target-based-interfaces/
http://devfiles.myopera.com/articles/3392/example4.html
http://devfiles.myopera.com/articles/3392/example4.html
http://webdesignernotebook.com/css/the-css3-target-pseudo-class-and-css-animations/
http://webdesignernotebook.com/css/the-css3-target-pseudo-class-and-css-animations/
http://css-tricks.com/css3-tabs/
http://css-tricks.com/css3-tabs/
http://richardshepherd.com/smashing/psuedo/
http://richardshepherd.com/smashing/psuedo/

1 :target {

2 background-color: rgba(255,255,255,0.3);

3

4 -webkit-border-radius:

5 10px;}

3. The UI Element States Pseudo-Classes

:enabled and :disabled

Together with :checked, :enabled and :disabled make up the three
pseudo-classes for UI element states. That is, they allow you to style
elements (usually form elements) based on their state. A state could be set
by the user (as with :checked) or by the developer (as with :enabled
and :disabled). For example, we could use the following:

1 input:enabled {

2 background-color: #dfd; }

3

4 input:disabled {

5 background-color: #fdd; }

This is a great way to give feedback on what users can and cannot fill in.
You’ll often see this dynamic feature enhanced with JavaScript.

iPhone Form Example
To illustrate :disabled in practice, I have disabled the form’s “Submit”
button in the HTML and added this line of CSS:

Smashing eBook #9│Mastering CSS for Web Developers │ 121

1 :disabled {

2 color: #600; }

The button text is now red!

:checked

The third pseudo-class here is :checked, which deals with the state of an
element such as a checkbox or radio button. Again, this is very useful for
giving feedback on what users have selected. For example:

1 input[type=radio]:checked {

2 font-weight: bold; }

iPhone Form Example
As a flourish, we can use CSS to highlight the text next to each radio button
once the button has been pressed:

1 input:checked + label {

2 text-shadow: 0 0 6px #fff; }

We first select any input that has been checked, and then we look for the
very next element that contains our text. Highlighting the text with
a simple text-shadow is an effective way to provide user feedback.

4. Negation Pseudo-Class

:not

This is another of my favorites, because it selects everything except the
element you specify. For example:

Smashing eBook #9│Mastering CSS for Web Developers │ 122

1 :not(footer) { … }

This selects everything on the page that is not a footer element. When used
with form inputs, they allow us to get a little sneakier:

1 input:not([type=submit]) { … }

2 input:not(disabled) { … }

The first line selects every form input that’s not a “Submit” button, which is
useful for styling forms. The second selects all input elements that are not
enabled; again useful for giving feedback on how to fill in a form.

iPhone User Example
You’ve already seen the :not selector in action. It’s particularly powerful
when chained with other CSS3 pseudo-selectors. Let’s take a closer look at
one example:

1 fieldset input:not([type=radio]) {

2 margin: 0;

3 width: 290px;

4 font-size: 18px;

5 border-radius: 0;

6 border-bottom: 0;

7 border-color: #999;

8 padding: 8px 10px;}

Here we are selecting all inputs inside fieldset elements that are not radio
buttons. This is incredibly useful when styling forms because you will often
want to style text inputs different from select boxes, radio buttons and
“Submit” buttons.

Smashing eBook #9│Mastering CSS for Web Developers │ 123

What’s Old Is New Again

Let’s go back to the beginning of our story and the humble a:link.
HTML5 arrived on the scene recently and brought with it an exciting
change to the <a> element that gives the CSS3 pseudo-selector an additive
effect.

An <a> element can now be wrapped around block-level elements, turning
whole sections of your page into links (as long as those sections don’t
contain other interactive elements). Whereas JavaScript was once popular
for making entire <div> elements clickable, you can now do so by
wrapping sections in <a> tags, like so:

1

2 <div id="advert">

3 <hgroup>

4 <h1>Jackson’s Widgets</h1>

5 <h2>The finest widgets in Kentucky</h2>

6 </hgroup>

7 <p>Buy Jackson’s Widgets today,

8 and be sure of a trouble-free life for you,

9 your widget and your machinery.

10 Trusted and sold since 1896.</p>

11 </div>

12

The implication for CSS pseudo-selectors is that you can now style a <div>
based on whether it is being hovered over (a:hover) or is active
(a:active), like so:

1 a:hover #advert {

2 background-color: #f7f7f7; }

Smashing eBook #9│Mastering CSS for Web Developers │ 124

http://dev.w3.org/html5/spec/Overview.html#the-a-element
http://dev.w3.org/html5/spec/Overview.html#the-a-element
http://dev.w3.org/html5/spec/Overview.html#the-a-element
http://dev.w3.org/html5/spec/Overview.html#the-a-element

Anything that decreases JavaScript and increases semantic code has to be
good!

Cross-Browser Compatibility

You had to ask, didn’t you! Unbelievably, Internet Explorer 8 (and earlier)
doesn’t support any of these selectors, whereas the latest versions of
Chrome, Opera, Safari and Firefox all do. Before your blood boils, consider
the following solutions.

Internet Explorer 9

Unless you’ve been living under a rock for the last week, you’ll have heard
that Microsoft unleashed its latest browser on an unsuspecting public. The
good thing is, it’s actually quite good. While I don’t expect people who are
reading this article to change their browsing habits, it’s worth remembering
that the majority of the world uses IE; and thanks to Windows Update and a
global marketing campaign, we can hope to see IE9 as the dominant
Windows browser in the near future. That’s good for Web designers, and it’s
good for pseudo-selectors. But what about IE8 and its ancestors?

Smashing eBook #9│Mastering CSS for Web Developers │ 125

Internet Explorer 9 is here.

JavaScript

Our old friend JavaScript comes to the rescue. I particularly like Selectivizr
by Keith Clark. Keith has put together a lovely script that, in combination
with your JavaScript library of choice, adds CSS3 pseudo-class selector
functionality for earlier versions of IE. Be warned that some libraries fare
better than others: if you’re using MooTools with Selectivizr, then all the
pseudo-classes will be available, but if you’re relying on jQuery to do the
heavy lifting, then a number of the selectors won’t work at all.

Smashing eBook #9│Mastering CSS for Web Developers │ 126

http://selectivizr.com/
http://selectivizr.com/

Selectivizr.

Keith recently released a jQuery plug-in that extends jQuery to include
support for the following CSS3 pseudo-class selectors:

• :first-of-type

• :last-of-type

• :only-of-type

• :nth-of-type

• :nth-last-of-type

It’s also worth looking at the ubiquitous ie7.js script (and its successors) by
Dean Edwards. This script solves a number of IE-related problems, including
CSS3 pseudo-selectors.

Smashing eBook #9│Mastering CSS for Web Developers │ 127

https://github.com/keithclark/JQuery-Extended-Selectors
https://github.com/keithclark/JQuery-Extended-Selectors
http://code.google.com/p/ie7-js/
http://code.google.com/p/ie7-js/

So, Should We Start Using CSS3 Pseudo-Selectors Today?

I guess the answer to that question depends on how you view JavaScript.
It’s true that pseudo-selectors can be completely replaced with classes and
IDs; but it’s also true that, when styling complex layouts, pseudo-selectors
are both incredibly useful and the natural next step for your CSS. If you find
that they improve the readability of your CSS and reduce the need for (non-
semantic) classes in your HTML, then it I’d definitely recommend embracing
them today.

You could use two selectors and fall back on a class name, but that would
just duplicate work. It also means that you wouldn’t need the pseudo-
classes in the first place. But if you did choose to go down this path, the
code might look something like this:

1 li:nth-of-type(3),

2 li.third { … }

This method is not as flexible as using pseudo-classes because you have to
keep updating the HTML and CSS when the page content changes.

If a lot of your users don’t have JavaScript enabled, that puts you in a bit of
a bind. Many Web designers argue that functionality (i.e. JavaScript) is
different from layout (i.e. CSS), and so you should not rely on JavaScript to
make pseudo-selectors work in IE8 and earlier.

While I agree with the principle, in practice I believe that providing the best
possible experience to 99% of your users is better than accounting for the
remaining 1% (or however big your non-JavaScript base may be).

Smashing eBook #9│Mastering CSS for Web Developers │ 128

Follow your website’s analytics, and be prepared to make decisions that
improve your skills as a Web designer and, more importantly, provide the
best experience possible to the majority of users.

Final Thoughts

It’s hard not to be depressed by IE8’s complete lack of support for pseudo-
classes. Arguably, having the browser calculate and recalculate page styles
in this fashion will have implications for rendering speed; but because all
other major browsers now support these selectors, it’s frustrating that most
of our users can’t benefit from them without a JavaScript hack.

But as Professor Farnsworth says, “Good news everyone!” Breaking on the
horizon is the dawn of Internet Explorer 9, and Microsoft has made sure
that its new browser supports each and every one of the selectors
discussed in this article.

CSS3 pseudo-selectors won’t likely take up large chunks of your style
sheets. They are specific yet dynamic and are more likely, at least initially, to
add finishing touches to a page than to set an overall style. Perhaps you
want to drop the bottom border in the last item of a list, or give visual
feedback to users as they fill in a form. This is all possible with CSS3, and as
usage becomes more mainstream, I expect these will become a regular part
of the Web designer’s toolbox.

Smashing eBook #9│Mastering CSS for Web Developers │ 129

http://msdn.microsoft.com/en-us/library/cc351024(v=vs.85).aspx#pseudoclasses
http://msdn.microsoft.com/en-us/library/cc351024(v=vs.85).aspx#pseudoclasses

Taming Advanced CSS Selectors
Inayaili de Leon

CSS is one of the most powerful tools that is available to Web designers (if
not the most powerful). With it we can completely transform the look of a
website in just a couple of minutes, and without even having to touch the
markup. But despite the fact that we are all well aware of its usefulness, CSS
selectors are still not used to their full potential and we sometimes have the
tendency to litter our HTML with excessive and unnecessary classes and ids,
divs and spans.

The best way to avoid these plagues spreading in your markup and keep it
clean and semantic, is by using more complex CSS selectors, ones that can
target specific elements without the need of a class or an id, and by doing
that keep our code and our stylesheets flexible.

CSS Specificity

Before delving into the realms of advanced CSS selectors, it’s important to
understand how CSS specificity works, so that we know how to properly use
our selectors and to avoid us spending hours debugging for a CSS issue
that could be easily fixed if we had only payed attention to the specificity.

When we are writing our CSS we have to keep in mind that some selectors
will rank higher than others in the cascade, the latest selector that we wrote
will not always override the previous ones that we wrote for the same
elements.

Smashing eBook #9│Mastering CSS for Web Developers │ 130

So how do you calculate the specificity of a particular selector? It’s fairly
straightforward if you take into account that specificity will be represented
as four numbers separated by commas, like: 1, 1, 1, 1 or 0, 2, 0, 1

1. The first digit (a) is always zero, unless there is a style attribute applied
to that element within the markup itself

2. The second digit (b) is the sum of the number of IDs in that selector

3. The third digit (c) is the sum of other attribute selectors and pseudo-
classes in that selector. Classes (.example) and attribute selectors (eg.
li[id=red]) are included here.

4. The fourth digit (d) counts the elements (like table, p, div, etc.) and
pseudo-elements (like :first-line)

5. The universal selector (*) has a specificity of zero

6. If two selectors have the same specificity, the one that comes last on
the stylesheet will be applied

Let’s take a look at a few examples, to make it easier to understand:

• #sidebar h2 — 0, 1, 0, 1

• h2.title — 0, 0, 1, 1

• h2 + p — 0, 0, 0, 2

• #sidebar p:first-line — 0, 1, 0, 2

From the following selectors, the first one is the one who will be applied to
the element, because it has the higher specificity:

Smashing eBook #9│Mastering CSS for Web Developers │ 131

• #sidebar p#first { color: red; } — 0, 2, 0, 1

• #sidebar p:first-line { color: blue; } — 0, 1, 0, 2

It’s important to have at least a basic understanding of how specificity
works, but tools like Firebug are useful to let us know which selector is
being applied to a particular element by listing all the CSS selectors in
order of their specificity when you are inspecting an element.

Firebug lets you easily see which selector is being applied to an element.

1. Attribute selectors

Attribute selectors let you target an element based on its attributes. You
can specify the element’s attribute only, so all the elements that have that
attribute — whatever the value — within the HTML will be targeted, or be
more specific and target elements that have particular values on their
attributes — and this is where attribute selectors show their power.

Smashing eBook #9│Mastering CSS for Web Developers │ 132

There are 6 different types of attribute selectors:

• [att=value]
The attribute has to have the exact value specified.

• [att~=value]
The attribute’s value needs to be a whitespace separated list of words
(for example, class=”title featured home”), and one of the words is
exactly the specified value.

• [att|=value]
The attribute’s value is exactly “value” or starts with the word “value”
and is immediately followed by “-”, so it would be “value-”.

• [att^=value]
The attribute’s value starts with the specified value.

• [att$=value]
The attribute’s value ends with the specified value.

• [att*=value]
The attribute’s value contains the specified value.

For example, if you want to change the background color of all the div
elements that are posts on your blog, you can use the an attribute selector
that targets every div whose class attribute starts with “post-”:

1 div[class*="post"] {

2 background-color: #333;

3 }

This will match all the div elements whose class attribute contains the
words “posts”, in any position.

Smashing eBook #9│Mastering CSS for Web Developers │ 133

Another useful usage of attribute selectors is to target different types of
input elements. For example, if you want your text inputs to have a
different width from the others, you can use a simple attribute selector:

1 input[type="text"] {

2 width: 200px;

3 }

This will target all the input elements whose type attribute is exactly
“text”.

Now let’s say you want to add a different icon next to each different type of
file your website is linking to, so your website’s visitors know when they’ll
get an image, a PDF file, a Word document, etc. This can be done by using
an attribute selector:

1 a[href$=".jpg"] {

2 background: url(jpeg.gif) no-repeat left 50%;

3 padding: 2px 0 2px 20px;

4 }

5

6 a[href$=".pdf"] {

7 background: url(pdf.gif) no-repeat left 50%;

8 padding: 2px 0 2px 20px;

9 }

10

11 a[href$=".doc"] {

12 background: url(word.gif) no-repeat left 50%;

13 padding: 2px 0 2px 20px;

14 }

Smashing eBook #9│Mastering CSS for Web Developers │ 134

In this example, we’ve used an attribute selector that will target all the links
(a) whose href attribute ends ($) with .jpg, .pdf or .doc.

Notes on browser support
Apart from Internet Explorer 6, all major browsers support attribute
selectors. This means that when you are using attribute selectors on your
stylesheets, you should make sure that IE6 users will still be provided with a
usable site. Take our third example: adding an icon to your links adds
another level of usability to your site, but the site will still be usable if the
links don’t show any icons.

2. Child selector

The child selector is represented by the sign “>”. It allows you to target
elements that are direct children of a particular element.

For example, if you want to match all the h2 elements that are a direct child
of your sidebar div, but not the h2 elements that may be also within the
div, but that are grandchildren (or later descendants) of your element, you
can use this selector:

1 div#sidebar > h2 {

2 font-size: 20px;

3 }

You can also use both child and descendant selectors combined. For
example, if you want to target only the blockquote elements that are
within divs that are direct grandchildren of the body element (you may
want to match blockquotes inside the main content div, but not if they are
outside it):

Smashing eBook #9│Mastering CSS for Web Developers │ 135

1 body > div > div blockquote {

2 margin-left: 30px;

3 }

Notes on browser support
Like the attribute selectors, the child selector is not supported by Internet
Explorer 6. If the effect you are trying to achieve by using it is crucial for the
website’s usability or overall aesthetics, you can consider using a class
selector with it, or on a IE-only stylesheet, but that would detract from the
purpose of using child selectors.

3. Sibling combinators

There are two types of sibling combinators: adjacent sibling combinators
and general sibling combinators.

Adjacent sibling combinator

This selector uses the plus sign, “+”, to combine two sequences of simple
selectors. The elements in the selector have the same parent, and the
second one must come immediately after the first.

The adjacent sibling combinator can be very useful, for example, when
dealing with text. Lets say you want to add a top margin to all the h2 tags
that follow a paragraph (you don’t need to add a top margin if the heading
comes after an h1 tag or if it’s the first element on that page):

1 p + h2 {

2 margin-top: 10px;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 136

You can be even more specific and say that you only want this rule applied
if the elements are within a particular div:

1 div.post p + h2 {

2 margin-top: 10px;

3 }

Or you can add another level of complexity: say you want the first line of
the paragraphs of every page to be in small caps.

1 .post h1 + p:first-line {

2 font-variant: small-caps;

3 }

Because you know that the first paragraph of every post immediately
follows an h1 tag, you can refer to the h1 on your selector.

General sibling combinator

The general sibling combinator works pretty much the same as the adjacent
sibling combinator, but with the difference that the second selector doesn’t
have to immediately follow the first one.

So if you need to target all the p tags that are within a particular div and
that follow the h1 tag (you may want those p tags to be larger than the
ones that come before the title of your post), you can use this selector:

1 .post h1 ~ p {

2 font-size: 13px;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 137

Notes on browser support
Internet Explorer 6 doesn’t understand sibling combinators, but, as for the
other cases, if your audience includes a small percentage of IE6 users, and if
the website’s layout isn’t broken or severely affected by its lack of support,
this is a much easier way of achieving lots of cool effects without the need
of cluttering your HTML with useless classes and ids.

4. Pseudo-classes

Dynamic pseudo-classes

These are called dynamic pseudo-classes because they actually do not exist
within the HTML: they are only present when the user is or has interacted
with the website.

There are two types of dynamic pseudo-classes: link and user action ones.
The link are :link and :visited, while the user action ones
are :hover, :active and :focus.

From all the CSS selectors mentioned in this post, these will probably be
the ones that are most commonly used.

The :link pseudo-class applies to links that haven’t been visited by the
user, while the :visited pseudo-class applies to links that have been
visited, so they are mutually exclusive.

The :hover pseudo-class applies when the user moves the cursor over the
element, without having to activate or click on it. The :active pseudo-
class applies when the user actually clicks on the element. And finally
the :focus pseudo-class applies when that element is on focus — the
most common application is on form elements.

Smashing eBook #9│Mastering CSS for Web Developers │ 138

You can use more than one user action dynamic pseudo-class in your
stylesheets, so you can have, for example, a different background color for
an input field depending on whether the user’s cursor is only hovering over
it or hovering over it while in focus:

1 input:focus {

2 background: #D2D2D2;

3 border: 1px solid #5E5E5E;

4 }

5

6 input:focus:hover {

7 background: #C7C7C7;

8 }

Notes on browser support
The dynamic pseudo-classes are supported by all modern browsers, even
IE6. But bear in mind that IE6 only allows the :hover pseudo-class to be
applied to link elements (a) and only IE8 accepts the :active state on
elements other than links.

:first-child

The :first-child pseudo-class allows you to target an element that is
the first child of another element. For example, if you want to add a top
margin to the first li element of your unordered lists, you can have this:

1 ul > li:first-child {

2 margin-top: 10px;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 139

Let’s take another example: you want all your h2 tags in your sidebar to
have a top margin, to separate them from whatever comes before them,
but the first one doesn’t need a margin. You can use the following code:

1 #sidebar > h2 {

2 margin-top: 10px;

3 }

4

5 #sidebar > h2:first-child {

6 margin-top: 0;

7 }

Notes on browser support
IE6 doesn’t support the :first-child pseudo-class. Depending on the
design that the pseudo-class is being applied to, it may not be a major
cause for concern. For example, if you are using the :first-child
selector to remove top or bottom margins from headings or paragraphs,
your layout will probably not break in IE6, it will only look sightly different.
But if you are using the :first-child selector to remove left and right
margins from, for example, a floated sequence of divs, that may cause more
disruption to your designs.

The language pseudo-class

The language pseudo-class, :lang(), allows you to match an element
based on its language.

For example, lets say you want a specific link on your site to have a different
background color, depending on that page’s language:

Smashing eBook #9│Mastering CSS for Web Developers │ 140

1 :lang(en) > a#flag {

2 background-image: url(english.gif);

3 }

4

5 :lang(fr) > a#flag {

6 background-image: url(french.gif);

7 }

The selectors will match that particular link if the page’s language is either
equal to “en” or “fr” or if it starts with “en” or “fr” and is immediately
followed by an “-”.

Notes on browser support
Not surprisingly, the only version of Internet Explorer that supports this
selector is 8. All other major browsers support the language pseudo-
selector.

5. CSS 3 Pseudo-classes

:target

When you’re using links with fragment identifiers (for example, http://
www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-
inspiration/#comments, where “#comments” is the fragment identifier), you
can style the target by using the :target pseudo-class.

For example, lets imagine you have a long page with lots of text and h2
headings, and there is an index of those headings at the top of the page. It
will be much easier for the user if, when clicking on a particular link within
the index, that heading would become highlighted in some way, when the
page scrolls down. Easy:

Smashing eBook #9│Mastering CSS for Web Developers │ 141

http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments
http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments
http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments
http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments
http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments
http://www.smashingmagazine.com/2009/08/02/bauhaus-ninety-years-of-inspiration/#comments

1 h2:target {

2 background: #F2EBD6;

3 }

Notes on browser support
This time, Internet Explorer is really annoying and has no support at all for
the :target pseudo-class. Another glitch is that Opera doesn’t support
this selector when using the back and forward buttons. Other than that, it
has support from the other major browsers.

The UI element states pseudo-classes

Some HTML elements have an enable or disabled state (for example, input
fields) and checked or unchecked states (radio buttons and checkboxes).
These states can be targeted by the :enabled, :disabled or :checked
pseudo-classes, respectively.

So you can say that any input that is disabled should have a light grey
background and dotted border:

1 input:disabled {

2 border:1px dotted #999;

3 background:#F2F2F2;

4 }

You can also say that all checkboxes that are checked should have a left
margin (to be easily seen within a long list of checkboxes):

1 input[type=”checkbox”]:checked {

2 margin-left: 15px;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 142

Notes on browser support
All major browsers, except our usual suspect, Internet Explorer, support the
UI element states pseudo-classes. If you consider that you are only adding
an extra level of detail and improved usability to your visitors, this can still
be an option.

6. CSS 3 structural pseudo-classes

:nth-child

The :nth-child() pseudo-class allows you to target one or more specific
children of a parent element.

You can target a single child, by defining its value as an integer:

1 ul li:nth-child(3) {

2 color: red;

3 }

This will turn the text on the third li item within the ul element red. Bear
in mind that if a different element is inside the ul (not a li), it will also be
counted as its child.

You can target a parent’s children using expressions. For example, the
following expression will match every third li element starting from the
fourth:

1 ul li:nth-child(3n+4) {

2 color: yellow;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 143

In the previous case, the first yellow li element will be the fourth. If you
just want to start counting from the first li element, you can use a simpler
expression:

1 ul li:nth-child(3n) {

2 color: yellow;

3 }

In this case, the first yellow li element will be the third, and every other
third after it. Now imagine you want to target only the first four li
elements within the list:

1 ul li:nth-child(-n+4) {

2 color: green;

3 }

The value of :nth-child can also be defined as “even” or “odd”, which are
the same as using “2n” (every second child) or “2n+1” (every second child
starting from the first), respectively.

:nth-last-child

The :nth-last-child pseudo-class works basically as the :nth-child
pseudo-class, but it starts counting the elements from the last one.

Using one of the examples above:

1 ul li:nth-child(-n+4) {

2 color: green;

3 }

Instead of matching the first four li elements in the list, this selector will
match the last four elements.

Smashing eBook #9│Mastering CSS for Web Developers │ 144

You can also use the values “even” or “odd”, with the difference that in this
case they will count the children starting from the last one:

1 ul li:nth-last-child(odd) {

2 color: grey;

3 }

:nth-of-type

The :nth-of-type pseudo-class works just like the :nth-child, with
the difference that it only counts children that match the element in the
selector.

This can be very useful if we want to target elements that may contain
different elements within them. For example, let’s imagine we want to turn
every second paragraph in a block of text blue, but we want to ignore other
elements such as images or quotations:

1 p:nth-of-type(even) {

2 color: blue;

3 }

You can use the same values as you would use for the :nth-child
pseudo-class.

:nth-last-of-type

You guessed it! The :nth-last-of-type pseudo-class can be used
exactly like the aforementioned :nth-last-child, but this time, it will
only target the elements that match our selector:

Smashing eBook #9│Mastering CSS for Web Developers │ 145

1 ul li:nth-last-of-type(-n+4) {

2 color: green;

3 }

We can be even more clever, and combine more than one of these pseudo-
classes together on a massive selector. Let’s say all images within a post
div to be floated left, except for the first and last one (let’s image these
would full width, so they shouldn’t be floated):

1 .post img:nth-of-type(n+2):nth-last-of-type(n+2) {

2 float: left;

3 }

So in the first part of this selector, we are targeting every image starting
from the second one. In the second part, we are targeting every image
except for the last one. Because the selectors aren’t mutually exclusive, we
can use them both on one selector thus excluding both the first and last
element at once!

:last-child

The :last-child pseudo-class works just as the :first-child
pseudo-class, but instead targets the last child of a parent element.

Let’s image you don’t want the last paragraph within your post div to have
a bottom margin:

1 .post > p:last-child {

2 margin-bottom: 0;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 146

This selector will target the last paragraph that is a direct and the last child
of an element with the class of “post”.

:first-of-type and :last-of-type

The :first-of-type pseudo-class is used to target an element that is
the first of its type within its parent.

For example, you can target the first paragraph that is a direct child of a
particular div, and capitalize its first line:

1 .post > p:first-of-type:first-line {

2 font-variant: small-caps;

3 }

With this selector you make sure that you are targeting only paragraphs
that are direct children of the “post” div, and that are the first to match our
p element.

The :last-of-type pseudo-class works exactly the same, but targets the
last child of its type instead.

:only-child

The :only-child pseudo-class represents an element that is the only
child of its parent.

Let’s say you have several boxes (“news”) with paragraphs of text inside
them. When you have more than one paragraph, you want the text to be
smaller than when you have only one:

Smashing eBook #9│Mastering CSS for Web Developers │ 147

1 div.news > p {

2 font-size: 1.2em;

3 }

4

5 div.news > p:only-child {

6 font-size: 1.5em;

7 }

In the first selector, we are defining the overall size of the p elements that
are direct children of a “news” div. On the second one, we are overriding
the previous font-size by saying, if the p element is the only child of the
“news” div, its font size should be bigger.

:only-of-type

The :only-of-type pseudo-class represents an element that is the only
child of its parent with the same element.

How can this be useful? Image you have a sequence of posts, each one
represented by a div with the class of “post”. Some of them have more
than one image, but others have only one image. You want the image
within the later ones to be aligned to the center, while the images on posts
with more than one image to be floated. That would be quite easy to
accomplish with this selector:

Smashing eBook #9│Mastering CSS for Web Developers │ 148

1 .post > img {

2 float: left;

3 }

4

5 .post > img:only-of-type {

6 float: none;

7 margin: auto;

8 }

:empty

The :empty pseudo-class represents an element that has no content within
it.

It can be useful in a number of ways. For example, if you have multiple
boxes in your “sidebar” div, but don’t want the empty ones to appear on
the page:

1 #sidebar .box:empty {

2 display: none;

3 }

Beware that even if there is a single space in the “box” div, it will not be
treated as empty by the CSS, and therefore will not match the selector.

Notes on browser support
Internet Explorer (up until version 8) has no support for structural pseudo-
classes. Firefox, Safari and Opera support these pseudo-classes on their
latest releases. This means that if what is being accomplished with these
selectors is fundamental for the website’s usability and accessibility, or if the
larger part of the website’s audience is using IE and you don’t want to
deprive them of some design details, it would be wise to keep using regular

Smashing eBook #9│Mastering CSS for Web Developers │ 149

classes and simpler selectors to cater for those browsers. If not, you can just
go crazy!

7. The negation pseudo-class

The negation pseudo-class, :not(), lets you target elements that do not
match the selector that is represented by its argument.

For example, this can be useful if you need to style all the input elements
within a form, but you don’t want your input elements with the type submit
to be styled — you want them to be styled in a different way —, to look
more like buttons:

1 input:not([type="submit"]) {

2 width: 200px;

3 padding: 3px;

4 border: 1px solid #000000;

5 }

Another example: you want all the paragraphs within your post div to have
a larger font-size, except for the one that indicates the time and date:

1 .post p:not(.date) {

2 font-size: 13px;

3 }

Can you image the number of possibilities this selector brings with it, and
the amount of useless selectors you could strip out off your CSS files were it
widely supported?

Smashing eBook #9│Mastering CSS for Web Developers │ 150

Notes on browser support
Internet Explorer is our usual party pooper here: no support at all, not even
on IE8. This probably means that this selector will still have to wait a while
before some developers lose the fear of adding them to their stylesheets.

8. Pseudo-elements

Pseudo-elements allow you to access elements that don’t actually exist in
the HTML, like the first line of a text block or its first letter.

Pseudo-elements exist in CSS 2.1, but the CSS 3 specifications state that
they should be used with the double colon “::”, to distinguish them from
pseudo-classes. In CSS 2.1, they are used with only one colon, “:”. Browsers
should be able accept both formats, except in the case of pseudo-elements
that may be introduced only in CSS 3.

::first-line

The ::first-line pseudo-element will match the first line of a block,
inline-block, table-caption or table-cell level element.

This is particularly useful to add subtle typographical details to your text
blocks, like, for example, transforming the first line of an article into small
caps:

1 h1 + p::first-line {

2 font-variant: small-caps;

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 151

If you’ve been paying attention, you’ll know that this means the paragraph
that comes immediately after an h1 tag (“+”) should have its first line in
small caps.

You could also refer to the first line of a particular div, without having to
refer to the actual paragraph tag:

1 div.post p::first-line { font-variant: small-caps; }

Or go one step farther and target specifically the first paragraph within a
particular div:

1 div.post > p:first-child::first-line {

2 font-variant: small-caps;

3 }

Here, the “>” symbol indicates that you are targeting a direct child the post
div, so if the paragraph were to be inside a second div, it wouldn’t match
this selector.

::first-letter

The ::first-letter pseudo-element will match the first letter of a
block, unless it’s preceded by some other content, like an image, on the
same line.

Like the ::first-line pseudo-element, ::first-letter is commonly
used to add typographical details to text elements, like drop caps or initials.

Here is how you could use the ::first-letter pseudo-element to
create a drop cap:

Smashing eBook #9│Mastering CSS for Web Developers │ 152

1 p {

2 font-size: 12px;

3 }

4

5 p::first-letter {

6 font-size: 24px;

7 float: left;

8 }

Bear in mind that if you use both ::first-line and ::first-letter
in the same element, the ::first-letter properties will override the
same properties inherited from ::first-line.

This element can sometimes produce unexpected results, if you’re not
aware of the W3C specs: it’s actually the CSS selector with the longest spec!
So it’s a good idea to read them carefully if you’re planning on using it (as it
is for all the other selectors).

::before and ::after

The ::before and ::after pseudo-elements are used to insert content
before or after an element’s content, purely via CSS.

These elements will inherit many of the properties of the elements that they
are being attached to.

Imagine you want to add the words “Graphic number x:” before the
descriptions of graphs and charts on your page. You could achieve this
without having to write the words “Graphic number”, or the number itself
yourself:

Smashing eBook #9│Mastering CSS for Web Developers │ 153

1 .post {

2 counter-reset: image;

3 }

4

5 p.description::before {

6 content: "Figure number " counter(image) ": ";

7 counter-increment: image;

8 }

What just happened here?

First, we tell the HTML to create the “image” counter. We could have added
this property to the body of the page, for example. Also, we can call this
counter whatever name we want to, as long as we always reference it by the
same name: try it for yourself!

Then we say that we want to add, before every paragraph with the class
“description”, this piece of content: “Figure number ” — notice that only
what we wrote between quotes will be created on the page, so we need to
add the spaces as well!

After that, we have counter(image): this will pick up the property we’ve
already defined in the .post selector. It will by default start with the
number one (1).

The next property is there so that the counter knows that for each
p.description, it needs to increment the image counter by 1
(counter-increment: image).

It’s not as complicated as it looks, and it can be quite useful.

The ::before and ::after pseudo-elements are often only used with
the content property, to add small sentences or typographical elements,

Smashing eBook #9│Mastering CSS for Web Developers │ 154

but here it’s shown how we can use it in a more powerful way in
conjunction with the counter-reset and counter-increment
properties.

Fun fact: the ::first-line and ::first-letter pseudo-elements
will match the content added by the ::before pseudo-element, if present.

Notes on browser support
These pseudo-elements are supported by IE8 (not IE7 or 6), if the single
colon format is used (for example, :first-letter, not ::first-
letter). All the other major browsers support these selectors.

Conclusion

Enough with the boring talk, now it’s time for you to grab the information
from this article and go try it for yourself: start by creating an experimental
page and testing all of these selectors. Come back here when in doubt and
make sure to always refer to the W3C specs, but don’t just sit there thinking
that because these selectors aren’t yet widely supported you might as well
ignore them.

If you’re a bit more adventurous, or if you’re not afraid of letting go of the
past filled with useless and non-semantic classes and ids, why not sneak
one or two of these powerful CSS selectors into your next project? We
promise you’ll never look back.

Smashing eBook #9│Mastering CSS for Web Developers │ 155

!important CSS Declarations: How and
When to Use Them
Louis Lazaris

When the CSS1 specification was drafted in the mid to late 90s, it
introduced !important declarations that would help developers and
users easily override normal specificity when making changes to their
stylesheets. For the most part, !important declarations have remained
the same, with only one change in CSS2.1 and nothing new added or
altered in the CSS3 spec in connection with this unique declaration.

Let’s take a look at what exactly these kinds of declarations are all about,
and when, if ever, you should use them.

Smashing eBook #9│Mastering CSS for Web Developers │ 156

http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/REC-CSS1-961217

A Brief Primer on the Cascade

Before we get into !important declarations and exactly how they work,
let’s give this discussion a bit of context. In the past, Smashing Magazine
has covered CSS specificity in-depth, so please take a look at that article if
you want a detailed discussion on the CSS cascade and how specificity ties
in.

Below is a basic outline of how any given CSS-styled document will decide
how much weight to give to different styles it encounters. This is a general
summary of the cascade as discussed in the spec:

• Find all declarations that apply to the element and property

• Apply the styling to the element based on importance and origin using
the following order, with the first item in the list having the least
weight:

• Declarations from the user agent

• Declarations from the user

• Declarations from the author

• Declarations from the author with !important added

• Declarations from the user with !important added

• Apply styling based on specificity, with the more specific selector
“winning” over more general ones

• Apply styling based on the order in which they appear in the stylesheet
(i.e., in the event of a tie, last one “wins”)

Smashing eBook #9│Mastering CSS for Web Developers │ 157

http://www.smashingmagazine.com/2010/04/07/css-specificity-and-inheritance/
http://www.smashingmagazine.com/2010/04/07/css-specificity-and-inheritance/
http://www.w3.org/TR/CSS21/cascade.html#cascade
http://www.w3.org/TR/CSS21/cascade.html#cascade

With that basic outline, you can probably already see how !important
declarations weigh in, and what role they play in the cascade. Let’s look at !
important in more detail.

Syntax and Description

An !important declaration provides a way for a stylesheet author to give
a CSS value more weight than it naturally has. It should be noted here that
the phrase “!important declaration” is a reference to an entire CSS
declaration, including property and value, with !important added (thanks
to Brad Czerniak for pointing out this discrepancy). Here is a simple code
example that clearly illustrates how !important affects the natural way
that styles are applied:

1 #example {

2 font-size: 14px !important;

3 }

4

5 #container #example {

6 font-size: 10px;

7 }

In the above code sample, the element with the id of “example” will have
text sized at 14px, due to the addition of !important.

Without the use of !important, there are two reasons why the second
declaration block should naturally have more weight than the first: The
second block is later in the stylesheet (i.e. it’s listed second). Also, the
second block has more specificity (#container followed by #example
instead of just #example). But with the inclusion of !important, the first
font-size rule now has more weight.

Smashing eBook #9│Mastering CSS for Web Developers │ 158

http://www.smashingmagazine.com/2010/11/02/the-important-css-declaration-how-and-when-to-use-it/#comment-491663
http://www.smashingmagazine.com/2010/11/02/the-important-css-declaration-how-and-when-to-use-it/#comment-491663

Some things to note about !important declarations:

• When !important was first introduced in CSS1, an author rule with
an !important declaration held more weight than a user rule with
an !important declaration; to improve accessibility, this was reversed
in CSS2

• If !important is used on a shorthand property, this adds
“importance” to all the sub-properties that the shorthand property
represents

• The !important keyword (or statement) must be placed at the end of
the line, immediately before the semicolon, otherwise it will have no
effect (although a space before the semicolon won’t break it)

• If for some particular reason you have to write the same property twice
in the same declaration block, then add !important to the end of the
first one, the first one will have more weight in every browser except
IE6 (this works as an IE6-only hack, but doesn’t invalidate your CSS)

• In IE6 and IE7, if you use a different word in place of !important
(like !hotdog), the CSS rule will still be given extra weight, while other
browsers will ignore it

When Should !important Be Used?

As with any technique, there are pros and cons depending on the
circumstances. So when should it be used, if ever? Here’s my subjective
overview of potential valid uses.

Smashing eBook #9│Mastering CSS for Web Developers │ 159

http://www.w3.org/TR/REC-CSS1-961217#important
http://www.w3.org/TR/REC-CSS1-961217#important
http://www.w3.org/TR/CSS2/cascade.html#important-rules
http://www.w3.org/TR/CSS2/cascade.html#important-rules
http://www.w3.org/TR/CSS2/cascade.html#important-rules
http://www.w3.org/TR/CSS2/cascade.html#important-rules

Never

!important declarations should not be used unless they are absolutely
necessary after all other avenues have been exhausted. If you use !
important out of laziness, to avoid proper debugging, or to rush a project
to completion, then you’re abusing it, and you (or those that inherit your
projects) will suffer the consequences.

If you include it even sparingly in your stylesheets, you will soon find that
certain parts of your stylesheet will be harder to maintain. As discussed
above, CSS property importance happens naturally through the cascade
and specificity. When you use !important, you’re disrupting the natural
flow of your rules, giving more weight to rules that are undeserving of such
weight.

If you never use !important, then that’s a sign that you understand CSS
and give proper forethought to your code before writing it.

That being said, the old adage “never say never” would certainly apply
here. So below are some legitimate uses for !important.

To Aid or Test Accessibility

As mentioned, user stylesheets can include !important declarations,
allowing users with special needs to give weight to specific CSS rules that
will aid their ability to read and access content.

A special needs user can add !important to typographic properties like
font-size to make text larger, or to color-related rules in order to
increase the contrast of Web pages.

Smashing eBook #9│Mastering CSS for Web Developers │ 160

In the screen grab below, Smashing Magazine’s home page is shown with a
user-defined stylesheet overriding the normal text size, which can be done
using Firefox’s Developer Toolbar:

In this case, the text size was adjustable without using !important,
because a user-defined stylesheet will override an author stylesheet
regardless of specificity. If, however, the text size for body copy was set in
the author stylesheet using an !important declaration, the user

Smashing eBook #9│Mastering CSS for Web Developers │ 161

stylesheet could not override the text-size setting, even with a more specific
selector. The inclusion of !important resolves this problem and keeps the
adjustability of text size within the user’s power, even if the author has
abused !important.

To Temporarily Fix an Urgent Problem

There will be times when something bugs out in your CSS on a live client
site, and you need to apply a fix very quickly. In most cases, you should be
able to use Firebug or another developer tool to track down the CSS code
that needs to be fixed. But if the problem is occurring on IE6 or another
browser that doesn’t have access to debugging tools, you may need to do
a quick fix using !important.

After you move the temporary fix to production (thus making the client
happy), you can work on fixing the issue locally using a more maintainable
method that doesn’t muck up the cascade. When you’ve figured out a
better solution, you can add it to the project and remove !important —
and the client will be none the wiser.

To Override Styles Within Firebug or Another Developer Tool

Inspecting an element in Firebug or Chrome’s developer tools allows you to
edit styles on the fly, to test things out, debug, and so on — without
affecting the real stylesheet. Take a look at the screen grab below, showing
some of Smashing Magazine’s styles in Chrome’s developer tools:

Smashing eBook #9│Mastering CSS for Web Developers │ 162

The highlighted background style rule has a line through it, indicating that
this rule has been overridden by a later rule. In order to reapply this rule,
you could find the later rule and disable it. You could alternatively edit the
selector to make it more specific, but this would give the entire declaration
block more specificity, which might not be desired.

!important could be added to a single line to give weight back to the
overridden rule, thus allowing you to test or debug a CSS issue without
making major changes to your actual stylesheet until you resolve the issue.

Here’s the same style rule with !important added. You’ll notice the line-
through is now gone, because this rule now has more weight than the rule
that was previously overriding it:

Smashing eBook #9│Mastering CSS for Web Developers │ 163

To Override Inline Styles in User-Generated Content

One frustrating aspect of CSS development is when user-generated content
includes inline styles, as would occur with some WYSIWYG editors in CMSs.
In the CSS cascade, inline styles will override regular styles, so any
undesirable element styling that occurs through generated content will be
difficult, if not impossible, to change using customary CSS rules. You can
circumvent this problem using an !important declaration, because a CSS
rule with !important in an author stylesheet will override inline CSS.

For Print Stylesheets

Although this wouldn’t be necessary in all cases, and might be discouraged
in some cases for the same reasons mentioned earlier, you could add !
important declarations to your print-only stylesheets to help override
specific styles without having to repeat selector specificity.

Smashing eBook #9│Mastering CSS for Web Developers │ 164

For Uniquely-Designed Blog Posts

If you’ve dabbled in uniquely-designed blog posts (many designers take
issue with using “art direction” for this technique, and rightly so), as
showcased on Heart Directed, you’ll know that such an undertaking
requires each separately-designed article to have its own stylesheet, or else
you need to use inline styles. You can give an individual page its own styles
using the code presented in this post on the Digging Into WordPress blog.

The use of !important could come in handy in such an instance, allowing
you to easily override the default styles in order to create a unique
experience for a single blog post or page on your site, without having to
worry about natural CSS specificity.

Conclusion

!important declarations are best reserved for special needs and users
who want to make Web content more accessible by easily overriding
default user agent or author stylesheets. So you should do your best to
give your CSS proper forethought and avoid using !important wherever
possible. Even in many of the uses described above, the inclusion of !
important is not always necessary.

Nonetheless, !important is valid CSS. You might inherit a project wherein
the previous developers used it, or you might have to patch something up
quickly — so it could come in handy. It’s certainly beneficial to understand
it better and be prepared to use it should the need arise.

Do you ever use !important in your stylesheets? When do you do so?
Are there any other circumstances you can think of that would require its
use?

Smashing eBook #9│Mastering CSS for Web Developers │ 165

http://www.smashingmagazine.com/the-death-of-the-blog-post/
http://www.smashingmagazine.com/the-death-of-the-blog-post/
http://www.alistapart.com/articles/art-direction-and-design/
http://www.alistapart.com/articles/art-direction-and-design/
http://www.alistapart.com/articles/art-direction-and-design/
http://www.alistapart.com/articles/art-direction-and-design/
http://heartdirected.com/
http://heartdirected.com/
http://digwp.com/2010/02/custom-css-per-post/
http://digwp.com/2010/02/custom-css-per-post/

An Introduction to CSS3 Keyframe
Animations
Louis Lazaris

By now you’ve probably heard at least something about animation in CSS3
using keyframe-based syntax. The CSS3 animations module in the
specification has been around for a couple of years now, and it has the
potential to become a big part of Web design.

Using CSS3 keyframe animations, developers can create smooth,
maintainable animations that perform relatively well and that don’t require
reams of scripting. It’s just another way that CSS3 is helping to solve a real-
world problem in an elegant manner. If you haven’t yet started learning the
syntax for CSS3 animations, here’s your chance to prepare for when this
part of the CSS3 spec moves past the working draft stage.

In this article, we’ll cover all the important parts of the syntax, and we’ll fill
you in on browser support so that you’ll know when to start using it.

A Simple Animated Landscape Scene

For the purpose of this article, I’ve created a simple animated landscape
scene to introduce the various aspects of the syntax. You can view the
demo page to get an idea of what I’ll be describing. The page includes a
sidebar that displays the CSS code used for the various elements (sun,
moon, sky, ground and cloud). Have a quick look, and then follow along as I
describe the different parts of the CSS3 animations module.

Smashing eBook #9│Mastering CSS for Web Developers │ 166

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://en.wikipedia.org/wiki/W3C_recommendation#Working_Draft_.28WD.29
http://en.wikipedia.org/wiki/W3C_recommendation#Working_Draft_.28WD.29
http://www.impressivewebs.com/demo-files/css3-animated-scene/
http://www.impressivewebs.com/demo-files/css3-animated-scene/
http://www.impressivewebs.com/demo-files/css3-animated-scene/
http://www.impressivewebs.com/demo-files/css3-animated-scene/

(NOTE: Safari has a bug that prevents the animation from finishing correctly.
This bug seems to be fixed in Safari using a WebKit nightly build, so future
versions of Safari should look the same as Chrome. See more under the
heading “The Animation’s Fill Mode”)

I’ll describe the CSS related to only one of the elements: the animated sun.
That should suffice to give you a good understanding of keyframe-based
animations. For the other elements in the demo, you can examine the code
on the demo page using the tabs.

The Keyframe @ Rule

The first unusual thing you’ll notice about any CSS3 animation code is the
keyframes @ rule. According to the spec, this specialized CSS @ rule is
followed by an identifier (chosen by the developer) that is referred to in
another part of the CSS.

The @ rule and its identifier are then followed by a number of rule sets (i.e.
style rules with declaration blocks, as in normal CSS code). This chunk of
rule sets is delimited by curly braces, which nest the rule sets inside the @
rule, much as you would find with other @ rules.

Here’s the @ rule we’ll be using:

1 @-webkit-keyframes sunrise {

2 /* rule sets go here … */

3 }

The word sunrise is an identifier of our choosing that we’ll use to refer to
this animation.

Smashing eBook #9│Mastering CSS for Web Developers │ 167

http://reference.sitepoint.com/css/atrulesref
http://reference.sitepoint.com/css/atrulesref

Notice that I’m using the -webkit- prefix for all of the code examples

here and in the demo. I’ll discuss browser support at the end of this

article, but for now it’s enough to know that the only stable browsers

that support these types of animations are WebKit-based ones.

The Keyframe Selectors

Let’s add some rule sets inside the @ rule:

1 @-webkit-keyframes sunrise {

2 0% {

3 bottom: 0;

4 left: 340px;

5 background: #f00;

6 }

7

8 33% {

9 bottom: 340px;

10 left: 340px;

11 background: #ffd630;

12 }

13

14 66% {

15 bottom: 340px;

16 left: 40px;

17 background: #ffd630;

18 }

19

20 100% {

21 bottom: 0;

Smashing eBook #9│Mastering CSS for Web Developers │ 168

22 left: 40px;

23 background: #f00;

24 }

25 }

With the addition of those new rule sets, we’ve introduced the keyframe
selector. In the code example above, the keyframe selectors are 0%, 33%,
66%, and 100%. The 0% and 100% selectors could be replaced by the
keywords “from” and “to,” respectively, and you would get the same results.

Each of the four rule sets in this example represents a different snapshot of
the animated element, with the styles defining the element’s appearance at
that point in the animation. The points that are not defined (for example,
from 34% to 65%) comprise the transitional period between the defined
styles.

Although the spec is still in development, some rules have been defined
that user agents should follow. For example, the order of the keyframes
doesn’t really matter. The keyframes will play in the order specified by the
percentage values, and not necessarily the order in which they appear.
Thus, if you place the “to” keyframe before the “from” keyframe, the
animation would still play the same way. Also, if a “to” or “from” (or its
percentage-based equivalent) is not declared, the browser will
automatically construct it. So, the rule sets inside the @ rule are not
governed by the cascade that you find in customary CSS rule sets.

The Keyframes That Animate the Sun

For the purpose of animating the sun in this demo, I’ve set four keyframes.
As mentioned, the code above includes comments that describe the
changes.

Smashing eBook #9│Mastering CSS for Web Developers │ 169

In the first keyframe, the sun is red (as if it were just rising or setting), and it
is positioned below ground (i.e. not visible). Naturally, the element itself
must be positioned relatively or absolutely in order for the left and
bottom values to have any effect. I’ve also used z-index to stack the
elements (to make sure, for example, that the ground is above the sun).
Take note that the only styles shown in the keyframes are the styles that are
animated. The other styles (such as z-index and position, which aren’t
animated) are declared elsewhere in the style sheet and thus aren’t shown
here.

1 0% {

2 bottom: 0; /* sun at bottom */

3 left: 340px; /* sun at right */

4 background: #f00; /* sun is red */

5 }

About one third of the way into the animation (33%), the sun is on the
same horizontal plane but has risen and changed to a yellow-orange (to
represent full daylight):

1 33% {

2 bottom: 340px; /* sun rises */

3 left: 340px;

4 background: #ffd630; /* changes color */

5 }

Then, at about two thirds into the animation (66%), the sun has moved to
the left about 300 pixels but stays on the same vertical plane. Notice
something else in the 66% keyframe: I’ve repeated the same color from the
33% keyframe, to keep the sun from changing back to red too early.

Smashing eBook #9│Mastering CSS for Web Developers │ 170

http://www.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/
http://www.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/

1 66% {

2 bottom: 340px;

3 left: 40px; /* sun moves left across sky */

4 background: #ffd630; /* maintains its color */

5 }

Finally, the sun gradually animates to its final state (the full red) as it
disappears below the ground.

1 100% {

2 bottom: 0; /* sun sets */

3 left: 40px;

4 background: #f00; /* back to red */

5 }

Associating The Animation Name With An Element

Here’s the next chunk of code we’ll add in our example. It associates the
animation name (in this case, the word sunrise) with a specific element in
our HTML:

1 #sun.animate {

2 -webkit-animation-name: sunrise;

3 }

Here we’re introducing the animation-name property. The value of this
property must match an identifier in an existing @keyframes rule,
otherwise no animation will occur. In some circumstances, you can use
JavaScript to set its value to none (the only keyword that has been reserved
for this property) to prevent an animation from occurring.

Smashing eBook #9│Mastering CSS for Web Developers │ 171

The object we’ve targeted is an element with an id of sun and a class of
animate. The reason I’ve doubled up the id and class like this is so that I
can use scripting to add the class name animate. In the demo, I’ve started
the page statically; then, with the click of a button, all of the elements with
a particular class name will have another class appended called animate.
This will trigger all of the animations at the same time and will allow the
animation to be controlled by the user.

Of course, that’s just one way to do it. As is the case with anything in CSS or
JavaScript, there are other ways to accomplish the same thing.

The Animation’s Duration And Timing Function

Let’s add two more lines to our CSS:

1 #sun.animate {

2 -webkit-animation-name: sunrise;

3 -webkit-animation-duration: 10s;

4 -webkit-animation-timing-function: ease;

5 }

You can specify the duration of the animation using the animation-
duration property. The duration represents the time taken to complete a
single iteration of the animation. You can express this value in seconds (for
example, 4s), milliseconds (2000ms), and seconds in decimal notation
(3.3s).

The specification doesn’t seem to specify all of the available units of time
measurement. However, it seems unlikely that anyone would need anything
longer than seconds; and even then, you could express duration in minutes,

Smashing eBook #9│Mastering CSS for Web Developers │ 172

hours or days simply by calculating those units into seconds or
milliseconds.

The animation-timing-function property, when declared for the
entire animation, allows you to define how an animation progresses over a
single iteration of the animation. The values for animation-timing-
function are ease, linear, ease-out, step-start and many more,
as outlined in the spec.

For our example, I’ve chosen ease, which is the default. So in this case, we
can leave out the property and the animation will look the same.
Additionally, you can apply a specific timing function to each keyframe:

1 @-webkit-keyframes sunrise {

2 0% {

3 background: #f00;

4 left: 340px;

5 bottom: 0;

6 -webkit-animation-timing-function: ease;

7 }

8

9 33% {

10 bottom: 340px;

11 left: 340px;

12 background: #ffd630;

13 -webkit-animation-timing-function: linear;

14 }

15

16 66% {

17 left: 40px;

18 bottom: 340px;

Smashing eBook #9│Mastering CSS for Web Developers │ 173

http://dev.w3.org/csswg/css3-animations/#animation-timing-function
http://dev.w3.org/csswg/css3-animations/#animation-timing-function

19 background: #ffd630;

20 -webkit-animation-timing-function: steps(4);

21 }

22

23 100% {

24 bottom: 0;

25 left: 40px;

26 background: #f00;

27 -webkit-animation-timing-function: linear;

28 }

29 }

A separate timing function defines each of the keyframes above. One of
them is the steps value, which jerks the animation forward a
predetermined number of steps. The final keyframe (100% or to) also has
its own timing function, but because it is for the final state of a forward-
playing animation, the timing function applies only if the animation is
played in reverse. In our example, we won’t define a specific timing function
for each keyframe, but this should suffice to show that it is possible.

The Animation’s Iteration Count And Direction

Let’s now add two more lines to our CSS:

1 #sun.animate {

2 -webkit-animation-name: sunrise;

3 -webkit-animation-duration: 10s;

4 -webkit-animation-timing-function: ease;

5 -webkit-animation-iteration-count: 1;

6 -webkit-animation-direction: normal;

7 }

Smashing eBook #9│Mastering CSS for Web Developers │ 174

This introduces two more properties: one that tells the animation how
many times to play, and an indicator that tells the animation to animate
back to the start position.

The animation-iteration-count property is set to 1, meaning that
the animation will play only once. This property accepts an integer value or
infinite.

In addition, the animation-direction property is set to normal (the
default), which means that the animation will play in the same direction
(from start to finish) each time it runs. In our example, the animation is set
to run only once, so the property is unnecessary. The other value we could
specify here is alternate, which makes the animation play in reverse on
every other iteration. Naturally, for the alternate value to take effect, the
iteration count needs to have a value of 2 or higher.

The Animation’s Delay And Play State

Let’s add another two lines of code:

1 #sun.animate {

2 -webkit-animation-name: sunrise;

3 -webkit-animation-duration: 10s;

4 -webkit-animation-timing-function: ease;

5 -webkit-animation-iteration-count: 1;

6 -webkit-animation-direction: normal;

7 -webkit-animation-delay: 5s;

8 -webkit-animation-play-state: running;

9 }

Smashing eBook #9│Mastering CSS for Web Developers │ 175

First, we introduce the animation-delay property, which does exactly
what you would think: it allows you to delay the animation by a set amount
of time. Interestingly, this property can have a negative value, which moves
the starting point partway through the animation according to negative
value.

The animation-play-state property, which might be removed from
the spec, accepts one of two possible values: running and paused. This
value has limited practical use. The default is running, and the value
paused simply makes the animation start off in a paused state, until it is
manually played. You can’t specify a paused state in the CSS for an
individual keyframe; the real benefit of this property becomes apparent
when you use JavaScript to change it in response to user input or
something else.

The Animation’s Fill Mode

We’ll add one more line to our code, the property to define the “fill mode”:

1 #sun.animate {

2 -webkit-animation-name: sunrise;

3 -webkt-animation-duration: 10s;

4 -webkit-animation-timing-function: ease;

5 -webkit-animation-iteration-count: 1;

6 -webkit-animation-direction: normal;

7 -webkit-animation-delay: 5s;

8 -webkit-animation-play-state: running;

9 -webkit-animation-fill-mode: forwards;

10 }

Smashing eBook #9│Mastering CSS for Web Developers │ 176

http://www.w3.org/TR/css3-animations/#animation-play-state
http://www.w3.org/TR/css3-animations/#animation-play-state

The animation-fill-mode property allows you to define the styles of
the animated element before and/or after the animation executes. A value
of backwards causes the styles in the first keyframe to be applied before
the animation runs. A value of forwards causes the styles in the last
keyframe to be applied after the animation runs. A value of both does
both.

UPDATE: It seems that the animation-fill-mode property has been
removed from the spec, or else was never there to begin with, so this
property may not end up in the spec. Also, Chrome and Safari respond
differently when it is used. Safari will only apply a value of “forwards” if
there are exactly two keyframes defined. It always seems to use the 2nd
keyframe as the “forwards” state, which is not how Chrome does it; Chrome
uses the final keyframe, which seems to be correct behaviour. Additionally,
I’ve confirmed that the most up to date WebKit nightly does not have this
bug, so future versions of Safari will render this correctly.

Shorthand

Finally, the specification describes shorthand notation for animations, which
combines six of the properties described above. This includes everything
except animation-play-state and animation-fill-mode.

Some Notes On The Demo Page And Browser Support

As mentioned, the code in this article is for animating only a single element
in the demo: the sun. To see the full code, visit the demo page. You can
view all of the source together or use the tabs in the sidebar to view the
code for individual elements in the animation.

Smashing eBook #9│Mastering CSS for Web Developers │ 177

http://www.w3.org/TR/css3-animations/#the-animation-shorthand-property-
http://www.w3.org/TR/css3-animations/#the-animation-shorthand-property-
http://www.impressivewebs.com/demo-files/css3-animated-scene/
http://www.impressivewebs.com/demo-files/css3-animated-scene/

The demo does not use any images, and the animation does not rely on
JavaScript. The sun, moon and cloud are all created using CSS3’s border-
radius, and the only scripting on the page is for the tabs on the right and
for the button that lets users start and reset the animation.

If you view the page in anything but a WebKit browser, it won’t work.
Firefox does not currently support keyframe-based animation, but support
is expected for Firefox 5. So, to make the source code as future-proof as
possible, I’ve included all of the -moz prefixes along with the standard
syntax.

Here are the browsers that support CSS3 keyframe animations:

• Chrome 2+

• Safari 4+

• Firefox 5+

• iOS Safari 3.2+

• Android 2.1+

Although no official announcement has been made, support in Opera is
expected. There’s no word yet on support in IE.

Smashing eBook #9│Mastering CSS for Web Developers │ 178

http://dbaron.org/log/20110419-animations
http://dbaron.org/log/20110419-animations
http://dbaron.org/log/20110419-animations
http://dbaron.org/log/20110419-animations

CSS Specificity and Inheritance
Inayaili de Leon

CSS’s barrier to entry is extremely low, mainly due to the nature of its
syntax. Being clear and easy to understand, the syntax makes sense even to
the inexperienced Web designer. It’s so simple, in fact, that you could style
a simple CSS-based website within a few hours of learning it.

But this apparent simplicity is deceitful. If after a few hours of work, your
perfectly crafted website looks great in Safari, all hell might break loose if
you haven’t taken the necessary measures to make it work in Internet
Explorer. In a panic, you add hacks and filters where only a few tweaks or a
different approach might do. Knowing how to deal with these issues comes
with experience, with trial and error and with failing massively and then
learning the correct way.

Understanding a few often overlooked concepts is also important. The
concepts may be hard to grasp and look boring at first, but understanding
them and knowing how to take advantage of them is important.

Two of these concepts are specificity and inheritance. Not very common
words among Web designers, are they? Talking about border-radius
and text-shadow is a lot more fun; but specificity and inheritance are
fundamental concepts that any person who wants to be good at CSS
should understand. They will help you create clean, maintainable and
flexible style sheets. Let’s look at what they mean and how they work.

The notion of a “cascade” is at the heart of CSS (just look at its name). It
ultimately determines which properties will modify a given element. The
cascade is tied to three main concepts: importance, specificity and source

Smashing eBook #9│Mastering CSS for Web Developers │ 179

order. The cascade follows these three steps to determine which properties
to assign to an element. By the end of this process, the cascade has
assigned a weight to each rule, and this weight determines which rule takes
precedence, when more than one applies.

1. Importance

Style sheets can have a few different sources:

1. User agent
For example, the browser’s default style sheet.

2. User
Such as the user’s browser options.

3. Author
This is the CSS provided by the page (whether inline, embedded or
external)

By default, this is the order in which the different sources are processed, so
the author’s rules will override those of the user and user agent, and so on.

There is also the !important declaration to consider in the cascade. This
declaration is used to balance the relative priority of user and author style
sheets. While author style sheets take precedence over user ones, if a user
rule has !important applied to it, it will override even an author rule that
also has !important applied to it.

Knowing this, let’s look at the final order, in ascending order of importance:

Smashing eBook #9│Mastering CSS for Web Developers │ 180

1. User agent declarations

2. User declarations

3. Author declarations

4. Author !important declarations

5. User !important declarations

This flexibility in priority is key because it allows users to override styles that
could hamper the accessibility of a website. (A user might want a larger font
or a different color, for example.)

2. Specificity

Every CSS rule has a particular weight (as mentioned in the introduction),
meaning it could be more or less important than the others or equally
important. This weight defines which properties will be applied to an
element when there are conflicting rules.

Upon assessing a rule’s importance, the cascade attributes a specificity to it;
if one rule is more specific than another, it overrides it.

If two rules share the same weight, source and specificity, the later one is
applied.

2.1 How to Calculate Specificity?

There are several ways to calculate a selector’s specificity.

The quickest way is to do the following. Add 1 for each element and
pseudo-element (for example, :before and :after); add 10 for each

Smashing eBook #9│Mastering CSS for Web Developers │ 181

attribute (for example, [type=”text”]), class and pseudo-class (for
example, :link or :hover); add 100 for each ID; and add 1000 for an
inline style.

Let’s calculate the specificity of the following selectors using this method:

• p.note
1 class + 1 element = 11

• #sidebar p[lang="en"]
1 ID + 1 attribute + 1 element = 111

• body #main .post ul li:last-child
1 ID + 1 class + 1 pseudo-class + 3 elements = 123

A similar method, described in the W3C’s specifications, is to start with a=0,
b=0, c=0 and d=0 and replace the numbers accordingly:

• a = 1 if the style is inline

• b = the number of IDs

• c = the number of attribute selectors, classes and pseudo-classes

• d = the number of element names and pseudo-elements

Let’s calculate the specificity of another set of selectors:

• <p style="color:#000000;">
a=1, b=0, c=0, d=0 → 1000

• footer nav li:last-child
a=0, b=0, c=1, d=3 → 0013

Smashing eBook #9│Mastering CSS for Web Developers │ 182

• #sidebar input:not([type="submit"])
a=0, b=1, c=1, d=1 → 0111
(Note that the negation pseudo-class doesn’t count, but the selector
inside it does.)

If you’d rather learn this in a more fun way, Andy Clarke drew a clever
analogy between specificity and Star Wars back in 2005, which certainly
made it easier for Star Wars fans to understand specificity. Another good
explanation is “CSS Specificity for Poker Players,” though slightly more
complicated.

Andy Clarke’s CSS Specificity Wars chart.

Smashing eBook #9│Mastering CSS for Web Developers │ 183

http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html
http://www.stuffandnonsense.co.uk/archives/css_specificity_wars.html
http://iamacamera.org/default.aspx?id=95
http://iamacamera.org/default.aspx?id=95

Remember that non-CSS presentational markup is attributed with a
specificity of 0, which would apply, for example, to the font tag.

Getting back to the !important declaration, keep in mind that using it on
a shorthand property is the same as declaring all of its sub-properties as !
important (even if that would revert them to the default values).

If you are using imported style sheets (@import) in your CSS, you have to
declare them before all other rules. Thus, they would be considered as
coming before all the other rules in the CSS file.

Finally, if two selectors turn out to have the same specificity, the last one
will override the previous one(s).

2.2 Making Specificity Work For You

If not carefully considered, specificity can come back to haunt you and lead
you to unwittingly transform your style sheets into a complex hierarchy of
unnecessarily complicated rules.

You can follow a few guidelines to avoid major issues:

• When starting work on the CSS, use generic selectors, and add
specificity as you go along

• Using advanced selectors doesn’t mean using unnecessarily
complicated ones

• Rely more on specificity than on the order of selectors, so that your
style sheets are easier to edit and maintain (especially by others)

A good rule of thumb can be found in Jim Jeffers’ article, “The Art and Zen
of Writing CSS”:

Smashing eBook #9│Mastering CSS for Web Developers │ 184

http://donttrustthisguy.com/2010/03/07/the-art-and-zen-of-writing-css/
http://donttrustthisguy.com/2010/03/07/the-art-and-zen-of-writing-css/
http://donttrustthisguy.com/2010/03/07/the-art-and-zen-of-writing-css/
http://donttrustthisguy.com/2010/03/07/the-art-and-zen-of-writing-css/

Refactoring CSS selectors to be less specific is exponentially more difficult
than simply adding specific rules as situations arise.

3. Inheritance

A succinct and clear explanation of inheritance is in the CSS3 Cascading
and Inheritance module specifications (still in “Working draft” mode):

Inheritance is a way of propagating property values from parent elements
to their children.

Some CSS properties are inherited by the children of elements by default.
For example, if you set the body tag of a page to a specific font, that font
will be inherited by other elements, such as headings and paragraphs,
without you having to specifically write as much. This is the magic of
inheritance at work.

The CSS specification determines whether each property is inherited by
default or not. Not all properties are inherited, but you can force ones to be
by using the inherit value.

3.1 Object-Oriented Programming Inheritance

Though beyond the scope of this article, CSS inheritance shouldn’t be
confused with object-oriented programming (OOP) inheritance. Here is the
definition of OOP inheritance from Wikipedia, and it makes clear that we
are not talking about the same thing:

Smashing eBook #9│Mastering CSS for Web Developers │ 185

http://www.w3.org/TR/css3-cascade/
http://www.w3.org/TR/css3-cascade/
http://www.w3.org/TR/css3-cascade/
http://www.w3.org/TR/css3-cascade/
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)

In object-oriented programming (OOP), inheritance is a way to form new
classes […] using classes that have already been defined. Inheritance is
employed to help reuse existing code with little or no modification. The
new classes […] inherit attributes and behavior of the pre-existing classes.
…

3.2 How Inheritance Works

When an element inherits a value from its parent, it is inheriting its
computed value. What does this mean? Every CSS property goes through a
four-step process when its value is being determined. Here’s an excerpt
from the W3C specification:

The final value of a property is the result of a four-step calculation: the
value is determined through specification (the “specified value”), then
resolved into a value that is used for inheritance (the “computed value”),
then converted into an absolute value if necessary (the “used value”), and
finally transformed according to the limitations of the local environment
(the “actual value”).

In other words:

1. Specified value
The user agent determines whether the value of the property comes
from a style sheet, is inherited or should take its initial value.

2. Computed value
The specified value is resolved to a computed value and exists even
when a property doesn’t apply. The document doesn’t have to be laid
out for the computed value to be determined.

Smashing eBook #9│Mastering CSS for Web Developers │ 186

http://www.w3.org/TR/CSS2/cascade.html#value-stages
http://www.w3.org/TR/CSS2/cascade.html#value-stages

3. Used value
The used value takes the computed value and resolves any
dependencies that can only be calculated after the document has been
laid out (like percentages).

4. Actual value
This is the value used for the final rendering, after any approximations
have been applied (for example, converting a decimal to an integer).

If you look at any CSS property’s specification, you will see that it defines its
initial (or default) value, the elements it applies to, its inheritance status and
its computed value (among others). For example, the background-color
specification states the following:

Name: background-color
Value: <color>
Initial: transparent
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: the computed color(s)

Confusing? It can be. So, what do we need to understand from all this? And
why is it relevant to inheritance?

Let’s go back to the first sentence of this section, which should make more
sense now. When an element inherits a value from its parent, it inherits its
computed value. Because the computed value exists even if it isn’t specified
in the style sheet, a property can be inherited even then: the initial value
will be used. So, you can make use of inheritance even if the parent doesn’t
have a specified property.

Smashing eBook #9│Mastering CSS for Web Developers │ 187

3.3 Using Inheritance

The most important thing to know about inheritance is that it’s there and
how it works. If you ignore the jargon, inheritance is actually very
straightforward.

Imagine you had to specify the font-size or font-family of every
element, instead of simply adding it to the body element? That would
cumbersome, which is why inheritance is so helpful.

Don’t break it by using the universal selector (*) with properties that inherit
by default. Bobby Jack wrote an interesting post about this on his Five-
Minute Argument blog. You don’t have to remember all of the properties
that inherit, but you will in time.

Rarely does a CSS-related article not bring some kind of bad news about
Internet Explorer. This article is no exception. IE supports the inherit
value only from version 8, except for the direction and visibility
properties. Great.

4. Using Your Tools

If you use tools like Firebug or Safari’s Web Inspector, you can see how a
given cascade works, which selectors have higher specificity and how
inheritance is working on a particular element.

For example, here below is Firebug in action, inspecting an element on the
page. You can see that some properties are overridden (i.e. crossed out) by
other more specific rules:

Smashing eBook #9│Mastering CSS for Web Developers │ 188

http://www.fiveminuteargument.com/blog/stop-breaking-inheritance
http://www.fiveminuteargument.com/blog/stop-breaking-inheritance

Firebug in action, informing you how specificity is working.

In the next shot, Safari’s Web Inspector shows the computed values of an
element. This way, you can see the values even though they haven’t been
explicitly added to the style sheet:

Smashing eBook #9│Mastering CSS for Web Developers │ 189

With Safari’s Web Inspector (and Firebug), you can view the computed values of a
particular element.

5. Conclusion

Hopefully this article has opened your eyes to (or has refreshed your
knowledge of) CSS inheritance and specificity. Even if you don’t think about
them, these issues are present in your daily work as a CSS author. Especially
in the case of specificity, it’s important to know how they affect your style
sheets and how to plan for them so that they cause only minimal (or no)
problems.

Smashing eBook #9│Mastering CSS for Web Developers │ 190

How to Use CSS3 Media Queries to Create a
Mobile Website

Rachel Andrew

CSS3 continues to both excite and frustrate web designers and developers.
We are excited about the possibilities that CSS3 brings, and the problems it
will solve, but also frustrated by the lack of support in Internet Explorer 8.
This article will demonstrate a technique that uses part of CSS3 that is also
unsupported by Internet Explorer 8. However, it doesn’t matter as one of
the most useful places for this module is somewhere that does have a lot of
support — small devices such as the iPhone and Android devices.

In this article I’ll explain how, with a few CSS rules, you can create an iPhone
version of your site using CSS3, that will work now. We’ll have a look at a
very simple example and I’ll also discuss the process of adding a small
screen device stylesheet to my own site to show how easily we can add
stylesheets for mobile devices to existing websites.

Media Queries

If you have ever created a print stylesheet for a website then you will be
familiar with the idea of creating a specific stylesheet to come into play
under certain conditions – in the case of a print stylesheet when the page is
printed. This functionality was enabled in CSS2 by media types. Media Types
let you specify a type of media to target, so you could target print,
handheld and so on. Unfortunately, these media types never gained a lot of
support by devices and, other than the print media type, you will rarely see
them in use.

Smashing eBook #9│Mastering CSS for Web Developers │ 191

The Media Queries in CSS3 take this idea and extend it. Rather than looking
for a type of device they look at the capability of the device, and you can
use them to check for all kinds of things. For example:

• width and height (of the browser window)

• device width and height

• orientation – for example is a phone in landscape or portrait mode?

• resolution

If the user has a browser that supports media queries then we can write
CSS specifically for certain situations. For example, detecting that the user
has a small device like a smart phone of some description and giving them
a specific layout. To see an example of this in practice, the UK Web
conference dConstruct has just launched their website for the 2010
conference and this uses media queries to great effect.

Smashing eBook #9│Mastering CSS for Web Developers │ 192

The dConstruct 2010 website in Safari on a desktop computer

Smashing eBook #9│Mastering CSS for Web Developers │ 193

The dConstruct 2010 website on an iPhone

You can see from the above example that the site hasn’t just been made
smaller to fit, but that the content has actually been re-architected to be
made more easy to access on the small screen of the device. In addition
many people might think of this as being an iPhone layout – but it isn’t. It
displays in the same way on Opera Mini on my Android based phone – so

Smashing eBook #9│Mastering CSS for Web Developers │ 194

by using media queries and targeting the device capabilities the dConstruct
site caters for all sorts of devices – even ones they might not have thought
of!

Using Media Queries to create a stylesheet for phones

To get started we can take a look at a very simple example. The below
layout is a very simple two column layout.

A very simple two column layout

Smashing eBook #9│Mastering CSS for Web Developers │ 195

To make it easier to read on a phone, I have decided to linearize the entire
design making it all one column, and also to make the header area much
smaller so readers don’t need to scroll past the header before getting to
any content.

The first way to use media queries is to have the alternate section of CSS
right inside your single stylesheet. So to target small devices we can use the
following syntax:

1 @media only screen and (max-device-width: 480px) {

2

3 }

We can then add our alternate CSS for small screen and width devices
inside the curly braces. By using the cascade we can simply overwrite any
styles rules we set for desktop browsers earlier in our CSS. As long as this
section comes last in your CSS it will overwrite the previous rules. So, to
linearize our layout and use a smaller header graphic, I can add the
following:

1 @media only screen and (max-device-width: 480px) {

2 div#wrapper {

3 width: 400px;

4 }

5

6 div#header {

7 background-image: url(media-queries-phone.jpg);

8 height: 93px;

9 position: relative;

10 }

11

Smashing eBook #9│Mastering CSS for Web Developers │ 196

12 div#header h1 {

13 font-size: 140%;

14 }

15

16 #content {

17 float: none;

18 width: 100%;

19 }

20

21 #navigation {

22 float:none;

23 width: auto;

24 }

25 }

In the code above, I am using an alternate background image and reducing
the height of the header, then setting the content and navigation to float
none and overwriting the width set earlier in the stylesheet. These rules
only come into play on a small screen device.

Smashing eBook #9│Mastering CSS for Web Developers │ 197

My simple example as displayed on an iPhone

Smashing eBook #9│Mastering CSS for Web Developers │ 198

Linking a separate stylesheet using media queries

Adding the specific code for devices inline might be a good way to use
media queries if you only need to make a few changes. However, if your
stylesheet contains a lot of overwriting or you want to completely separate
the styles shown to desktop browsers and those used for small screen
devices, then linking in a different stylesheet will enable you to keep the
CSS separate.

To add a separate stylesheet after your main stylesheet and use the cascade
to overwrite the rules, use the following.

1 <link rel="stylesheet" type="text/css" media="only

screen and (max-device-width: 480px)" href="small-

device.css" />

Testing media queries

If you are the owner of an iPhone, Android device or other device that has a
browser which supports media queries you can test your CSS yourself.
However you will need to upload the code somewhere in order to view it.
What about testing devices you don’t own and testing locally?

An excellent site that can help you during the development process is
ProtoFluid This application gives you a form to enter your URL – which can
be a local URL – and view the design as if in the browser on an iPhone, iPad
or a range of other devices. The screenshot below is the dConstruct site we
looked at earlier as seen through the iPhone view on ProtoFluid.

Smashing eBook #9│Mastering CSS for Web Developers │ 199

The dConstruct 2010 website in ProtoFluid

You can also enter in your own window size if you have a specific device
you want to test for and know the dimensions of it’s screen.

To use ProtoFluid, you need to slightly modify the media query shown
earlier to include max-width as well as max-device-width. This means that
the media query also comes into play if the user has a normal desktop
browser but is using a very tiny window.

1 @media only screen and (max-width: 480px), only screen

and (max-device-width: 480px) {

2

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 200

After updating your code to the above, just refresh your page in the
browser and then drag the window in and you should see the layout
change as it hits 480 pixels. The media queries are now reacting when the
viewport width hits the value you entered.

You are now all ready to test using ProtoFluid. The real beauty of ProtoFluid
is that you can still use tools such as FireBug to tweak your design,
something you won’t have once on the iPhone. Obviously, you should still
try and get a look at your layout in as many devices as possible, but
ProtoFluid makes development and testing much simpler.

Note that if you don’t want your site to switch layout when someone drags
their window narrow you can always remove the max-width part of the
query before going live, so the effect only happens for people with a small
device and not just a small browser window.

Retrofitting an existing site

I have kept the example above very simple in order to demonstrate the
technique. However, this technique could very easily be used to retrofit an
existing site with a version for small screen devices. One of the big selling
points of using CSS for layout was this ability to provide alternate versions
of our design. As an experiment, I decided to take my own business website
and apply these techniques to the layout.

Smashing eBook #9│Mastering CSS for Web Developers │ 201

The desktop layout

The website for my business currently has a multi-column layout. The
homepage is a little different but in general we have a fixed width 3 column
layout. This design is a couple of years old so we didn’t consider media
queries when building it.

My site in a desktop browser

Smashing eBook #9│Mastering CSS for Web Developers │ 202

Adding the new stylesheet

There will be a number of changes that I need to make to linearize this
layout, so I’m going to add a separate stylesheet using media queries to
load this stylesheet after the current stylesheet and only if the max-width is
less than 480 pixels.

1 <link rel="stylesheet" type="text/css" media="only

screen and (max-width: 480px), only screen and (max-

device-width: 480px)" href="/assets/css/small-

device.css" />

To create my new stylesheet, I take the default stylesheet for the site and
save it as small-device.css. So this starts life as a copy of my main
stylesheet. What I am going to do is go through and overwrite certain rules
and then delete anything I don’t need.

Shrinking the header

The first thing I want to do is make the logo fit nicely on screen for small
devices. As the logo is a background image this is easy to do as I can load a
different logo in this stylesheet. I also have a different background image
with a shorter top area over which the logo sits.

1 body {

2 background-image: url(/img/small-bg.png);

3 }

4

5 #wrapper {

6 width: auto;

7 margin: auto;

8 text-align: left;

Smashing eBook #9│Mastering CSS for Web Developers │ 203

9 background-image: url(/img/small-logo.png);

10 background-position: left 5px;

11 background-repeat: no-repeat;

12 min-height: 400px;

13 }

Linearizing the layout

The next main job is to linearize the layout and make it all one column. The
desktop layout is created using floats so all I need to do is find the rules
that float the columns, set them to float: none and width:auto. This drops all
the columns one under another.

1 .article #aside {

2 float: none;

3 width: auto;

4 }

Tidying up

Everything after this point is really just a case of looking at the layout in
ProtoFluid and tweaking it to give sensible amounts of margin and padding
to areas that now are stacked rather than in columns. Being able to use
Firebug in ProtoFluid makes this job much easier as my workflow mainly
involves playing around using Firebug until I am happy with the effect and
then copying that CSS into the stylesheet.

Smashing eBook #9│Mastering CSS for Web Developers │ 204

Testing in an iPhone

Having created my stylesheet and uploading it I wanted to check how it
worked in a real target device. In the iPhone, I discovered that the site still
loaded zoomed out rather than zooming in on my nice readable single
column. A quick search on the Safari developer website gave me my answer
– to add a meta tag to the head of the website setting the width of the
viewport to the device width.

1 <meta name="viewport" content="width=device-width" />

After adding the meta tag the site now displays zoomed in one the single
column.

Smashing eBook #9│Mastering CSS for Web Developers │ 205

The site as it now displays on an iPhone

This was a very simple retrofit to show that it is possible to add a mobile
version of your site simply. If I was building a site from scratch that I would
be using media queries on, there are definitely certain choices I would
make to make the process simpler. For example, considering the linearized
column orders, using background images where possible, as these can be

Smashing eBook #9│Mastering CSS for Web Developers │ 206

switched using CSS, or perhaps using fluid images. Our desktop layout
features a case studies carousel on the homepage, this wasn’t easy to
interact with on a touch screen device and so I checked using JavaScript if
the browser window was very narrow and didn’t launch the carousel. The
way this was already written meant that the effect of stopping the carousel
loading was that one case study would appear on the screen, which seems
a reasonable solution for people on a small device. With a bit more time I
could rewrite that carousel with an alternate version for users of mobile
devices, perhaps with interactions more suitable to a touch screen.

Providing support for Media Queries in older browsers

This article covers the use of media queries in devices that have native
support. If you are only interested in supporting iPhone and commonly
used mobile browsers such as Opera Mini you have the luxury of not
needing to worry about non-supporting browsers. If you want to start
using media queries in desktop browsers then you might be interested to
discover that there are a couple of techniques available which use
JavaScript to add support to browsers such as Internet Explorer 8 (and
lower versions) and Firefox prior to 3.5. Internet Explorer 9 will have support
for CSS3 Media Queries.

Try it for yourself

Using Media Queries is one place you can really start to use CSS3 in your
daily work. It is worth remembering that the browsers that support media
queries also support lots of other CSS3 properties so your stylesheets that
target these devices can also use other CSS3 to create a slick effect when
viewed on an iPhone or other mobile device.

Smashing eBook #9│Mastering CSS for Web Developers │ 207

Responsive Web Design: What It Is and
How to Use It
Kayla Knight

Almost every new client these days wants a mobile version of their website.
It’s practically essential after all: one design for the BlackBerry, another for
the iPhone, the iPad, netbook, Kindle — and all screen resolutions must be
compatible, too. In the next five years, we’ll likely need to design for a
number of additional inventions. When will the madness stop? It won’t, of
course.

In the field of Web design and development, we’re quickly getting to the
point of being unable to keep up with the endless new resolutions and
devices. For many websites, creating a website version for each resolution
and new device would be impossible, or at least impractical. Should we just
suffer the consequences of losing visitors from one device, for the benefit
of gaining visitors from another? Or is there another option?

Responsive Web design is the approach that suggests that design and
development should respond to the user’s behavior and environment
based on screen size, platform and orientation. The practice consists of a
mix of flexible grids and layouts, images and an intelligent use of CSS
media queries. As the user switches from their laptop to iPad, the website
should automatically switch to accommodate for resolution, image size and
scripting abilities. In other words, the website should have the technology
to automatically respond to the user’s preferences. This would eliminate the
need for a different design and development phase for each new gadget
on the market.

Smashing eBook #9│Mastering CSS for Web Developers │ 208

The Concept Of Responsive Web Design

Ethan Marcotte wrote an introductory article about the approach,
“Responsive Web Design,” for A List Apart. It stems from the notion of
responsive architectural design, whereby a room or space automatically
adjusts to the number and flow of people within it:

“Recently, an emergent discipline called “responsive architecture” has
begun asking how physical spaces can respond to the presence of
people passing through them. Through a combination of embedded
robotics and tensile materials, architects are experimenting with art
installations and wall structures that bend, flex, and expand as crowds
approach them. Motion sensors can be paired with climate control
systems to adjust a room’s temperature and ambient lighting as it fills
with people. Companies have already produced “smart glass
technology” that can automatically become opaque when a room’s
occupants reach a certain density threshold, giving them an additional
layer of privacy.”

Transplant this discipline onto Web design, and we have a similar yet whole
new idea. Why should we create a custom Web design for each group of
users; after all, architects don’t design another building for each group size
and type that passes through it? Like responsive architecture, Web design
should automatically adjust. It shouldn’t require countless custom-made
solutions for each new category of users.

Obviously, we can’t use motion sensors and robotics to accomplish this the
way a building would. Responsive Web design requires a more abstract way
of thinking. However, some ideas are already being practiced: fluid layouts,
media queries and scripts that can reformat Web pages and mark-up
effortlessly (or automatically).

Smashing eBook #9│Mastering CSS for Web Developers │ 209

http://ethanmarcotte.com/
http://ethanmarcotte.com/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

But responsive Web design is not only about adjustable screen resolutions
and automatically resizable images, but rather about a whole new way of
thinking about design. Let’s talk about all of these features, plus additional
ideas in the making.

Adjusting Screen Resolution

With more devices come varying screen resolutions, definitions and
orientations. New devices with new screen sizes are being developed every
day, and each of these devices may be able to handle variations in size,
functionality and even color. Some are in landscape, others in portrait, still
others even completely square. As we know from the rising popularity of
the iPhone, iPad and advanced smartphones, many new devices are able to
switch from portrait to landscape at the user’s whim. How is one to design
for these situations?

Smashing eBook #9│Mastering CSS for Web Developers │ 210

In addition to designing for both landscape and portrait (and enabling
those orientations to possibly switch in an instant upon page load), we
must consider the hundreds of different screen sizes. Yes, it is possible to
group them into major categories, design for each of them, and make each
design as flexible as necessary. But that can be overwhelming, and who
knows what the usage figures will be in five years? Besides, many users do
not maximize their browsers, which itself leaves far too much room for
variety among screen sizes.

Morten Hjerde and a few of his colleagues identified statistics on about 400
devices sold between 2005 and 2008. Below are some of the most
common:

Smashing eBook #9│Mastering CSS for Web Developers │ 211

http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html
http://sender11.typepad.com/sender11/2008/04/mobile-screen-s.html

Since then even more devices have come out. It’s obvious that we can’t
keep creating custom solutions for each one. So, how do we deal with the
situation?

Part of the Solution: Flexible Everything

A few years ago, when flexible layouts were almost a “luxury” for websites,
the only things that were flexible in a design were the layout columns
(structural elements) and the text. Images could easily break layouts, and
even flexible structural elements broke a layout’s form when pushed
enough. Flexible designs weren’t really that flexible; they could give or take
a few hundred pixels, but they often couldn’t adjust from a large computer
screen to a netbook.

Now we can make things more flexible. Images can be automatically
adjusted, and we have workarounds so that layouts never break (although
they may become squished and illegible in the process). While it’s not a
complete fix, the solution gives us far more options. It’s perfect for devices
that switch from portrait orientation to landscape in an instant or for when
users switch from a large computer screen to an iPad.

In Ethan Marcotte’s article, he created a sample Web design that features
this better flexible layout:

Smashing eBook #9│Mastering CSS for Web Developers │ 212

http://www.quirksmode.org/mobile/mobilemarket.html
http://www.quirksmode.org/mobile/mobilemarket.html

www.alistapart.com

The entire design is a lovely mix of fluid grids, fluid images and smart mark-
up where needed. Creating fluid grids is fairly common practice, and there
are a number of techniques for creating fluid images:

• Hiding and Revealing Portions of Images

• Creating Sliding Composite Images

• Foreground Images That Scale With the Layout

For more information on creating fluid websites, be sure to look at the
book “Flexible Web Design: Creating Liquid and Elastic Layouts with CSS”
by Zoe Mickley Gillenwater, and download the sample chapter “Creating
Flexible Images.” In addition, Zoe provides the following extensive list of

Smashing eBook #9│Mastering CSS for Web Developers │ 213

http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/articles/fluidgrids/
http://www.alistapart.com/articles/fluidgrids/
http://unstoppablerobotninja.com/entry/fluid-images
http://unstoppablerobotninja.com/entry/fluid-images
http://zomigi.com/blog/hiding-and-revealing-portions-of-images/
http://zomigi.com/blog/hiding-and-revealing-portions-of-images/
http://zomigi.com/blog/creating-sliding-composite-images/
http://zomigi.com/blog/creating-sliding-composite-images/
http://zomigi.com/blog/foreground-images-that-scale-with-the-layout/
http://zomigi.com/blog/foreground-images-that-scale-with-the-layout/
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html
http://www.flexiblewebbook.com/bonus.html

tutorials, resources, inspiration and best practices on creating flexible grids
and layouts: “Essential Resources for Creating Liquid and Elastic Layouts.”

While from a technical perspective this is all easily possible, it’s not just
about plugging these features in and being done. Look at the logo in this
design, for example:

www.alistapart.com

If resized too small, the image would appear to be of low quality, but
keeping the name of the website visible and not cropping it off was
important. So, the image is divided into two: one (of the illustration) set as
a background, to be cropped and to maintain its size, and the other (of the
name) resized proportionally.

Smashing eBook #9│Mastering CSS for Web Developers │ 214

http://zomigi.com/blog/essential-resources-for-creating-liquid-and-elastic-layouts/
http://zomigi.com/blog/essential-resources-for-creating-liquid-and-elastic-layouts/
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html
http://www.alistapart.com/d/responsive-web-design/ex/ex-site-flexible.html

1 <h1 id="logo"><img src="site/logo.png"

alt="The Baker Street Inquirer" /></h1>

Above, the h1 element holds the illustration as a background, and the
image is aligned according to the container’s background (the heading).

This is just one example of the kind of thinking that makes responsive Web
design truly effective. But even with smart fixes like this, a layout can
become too narrow or short to look right. In the logo example above
(although it works), the ideal situation would be to not crop half of the
illustration or to keep the logo from being so small that it becomes illegible
and “floats” up.

Flexible Images

One major problem that needs to be solved with responsive Web design is
working with images. There are a number of techniques to resize images
proportionately, and many are easily done. The most popular option, noted
in Ethan Marcotte’s article on fluid images but first experimented with by
Richard Rutter, is to use CSS’s max-width for an easy fix.

1 img { max-width: 100%; }

As long as no other width-based image styles override this rule, every
image will load in its original size, unless the viewing area becomes
narrower than the image’s original width. The maximum width of the image
is set to 100% of the screen or browser width, so when that 100% becomes
narrower, so does the image. Essentially, as Jason Grigsby noted,:

“The idea behind fluid images is that you deliver images at the
maximum size they will be used at. You don’t declare the height and
width in your code, but instead let the browser resize the images as

Smashing eBook #9│Mastering CSS for Web Developers │ 215

http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://clagnut.com/sandbox/imagetest3/
http://clagnut.com/sandbox/imagetest3/
http://www.cloudfour.com/css-media-query-for-mobile-is-fools-gold/
http://www.cloudfour.com/css-media-query-for-mobile-is-fools-gold/

needed while using CSS to guide their relative size.” It’s a great and
simple technique to resize images beautifully.

Note that max-width is not supported in IE, but a good use of width:
100% would solve the problem neatly in an IE-specific style sheet. One
more issue is that when an image is resized too small in some older
browsers in Windows, the rendering isn’t as clear as it ought to be. There is
a JavaScript to fix this issue, though, found in Ethan Marcotte’s article.

While the above is a great quick fix and good start to responsive images,
image resolution and download times should be the primary
considerations. While resizing an image for mobile devices can be very
simple, if the original image size is meant for large devices, it could
significantly slow download times and take up space unnecessarily.

Filament Group’s Responsive Images

This technique, presented by the Filament Group, takes this issue into
consideration and not only resizes images proportionately, but shrinks
image resolution on smaller devices, so very large images don’t waste
space unnecessarily on small screens. Check out the demo page here.

Smashing eBook #9│Mastering CSS for Web Developers │ 216

http://unstoppablerobotninja.com/entry/fluid-images/
http://unstoppablerobotninja.com/entry/fluid-images/
http://filamentgroup.com/examples/responsive-images/
http://filamentgroup.com/examples/responsive-images/

filamentgroup.com

This technique requires a few files, all of which are available on Github. First,
a JavaScript file (rwd-images.js), the .htaccess file and an image file (rwd.gif).
Then, we can use just a bit of HTML to reference both the larger and
smaller resolution images: first, the small image, with a .r prefix to clarify
that it should be responsive, and then a reference to the bigger image
using data-fullsrc.

1

The data-fullsrc is a custom HTML5 attribute, defined in the files linked
to above. For any screen that is wider than 480 pixels, the larger-resolution
image (largeRes.jpg) will load; smaller screens wouldn’t need to load the
bigger image, and so the smaller image (smallRes.jpg) will load.

Smashing eBook #9│Mastering CSS for Web Developers │ 217

http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
https://github.com/filamentgroup/Responsive-Images
https://github.com/filamentgroup/Responsive-Images

The JavaScript file inserts a base element that allows the page to separate
responsive images from others and redirects them as necessary. When the
page loads, all files are rewritten to their original forms, and only the large
or small images are loaded as necessary. With other techniques, all higher-
resolution images would have had to be downloaded, even if the larger
versions would never be used. Particularly for websites with a lot of images,
this technique can be a great saver of bandwidth and loading time.

This technique is fully supported in modern browsers, such as IE8+, Safari,
Chrome and Opera, as well as mobile devices that use these same browsers
(iPad, iPhone, etc.). Older browsers and Firefox degrade nicely and still
resize as one would expect of a responsive image, except that both
resolutions are downloaded together, so the end benefit of saving space
with this technique is void.

Stop iPhone Simulator Image Resizing

One nice thing about the iPhone and iPod Touch is that Web designs
automatically rescale to fit the tiny screen. A full-sized design, unless
specified otherwise, would just shrink proportionally for the tiny browser,
with no need for scrolling or a mobile version. Then, the user could easily
zoom in and out as necessary.

There was, however, one issue this simulator created. When responsive Web
design took off, many noticed that images were still changing
proportionally with the page even if they were specifically made for (or
could otherwise fit) the tiny screen. This in turn scaled down text and other
elements.

Because this works only with Apple’s simulator, we can use an Apple-
specific meta tag to fix the problem, placing it below the website’s <head>

Smashing eBook #9│Mastering CSS for Web Developers │ 218

section. Thanks to Think Vitamin’s article on image resizing, we have the
meta tag below:

1 <meta name="viewport" content="width=device-width;

initial-scale=1.0">

Setting the initial-scale to 1 overrides the default to resize images
proportionally, while leaving them as is if their width is the same as the
device’s width (in either portrait or landscape mode). Apple’s
documentation has a lot more information on the viewport meta tag.

Custom Layout Structure

For extreme size changes, we may want to change the layout altogether,
either through a separate style sheet or, more efficiently, through a CSS
media query. This does not have to be troublesome; most of the styles can
remain the same, while specific style sheets can inherit these styles and
move elements around with floats, widths, heights and so on.

For example, we could have one main style sheet (which would also be the
default) that would define all of the main structural elements, such as
#wrapper, #content, #sidebar, #nav, along with colors, backgrounds
and typography. Default flexible widths and floats could also be defined.

If a style sheet made the layout too narrow, short, wide or tall, we could
then detect that and switch to a new style sheet. This new child style sheet
would adopt everything from the default style sheet and then just redefine
the layout’s structure.

Here is the style.css (default) content:

Smashing eBook #9│Mastering CSS for Web Developers │ 219

http://thinkvitamin.com/design/responsive-design-image-gotcha/
http://thinkvitamin.com/design/responsive-design-image-gotcha/
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/safarihtmlref/Articles/MetaTags.html
http://developer.apple.com/library/safari/#documentation/appleapplications/reference/safarihtmlref/Articles/MetaTags.html

1 /* Default styles that will carry to the child style

sheet */

2

3 html,body{

4 background...

5 font...

6 color...

7 }

8

9 h1,h2,h3{}

10 p, blockquote, pre, code, ol, ul{}

11

12 /* Structural elements */

13 #wrapper{

14 width: 80%;

15 margin: 0 auto;

16

17 background: #fff;

18 padding: 20px;

19 }

20

21 #content{

22 width: 54%;

23 float: left;

24 margin-right: 3%;

25 }

26

27 #sidebar-left{

28 width: 20%;

29 float: left;

30 margin-right: 3%;

Smashing eBook #9│Mastering CSS for Web Developers │ 220

31 }

32

33 #sidebar-right{

34 width: 20%;

35 float: left;

36 }

Here is the mobile.css (child) content:

1 #wrapper{

2 width: 90%;

3 }

4

5 #content{

6 width: 100%;

7 }

8

9 #sidebar-left{

10 width: 100%;

11 clear: both;

12

13 /* Additional styling for our new layout */

14 border-top: 1px solid #ccc;

15 margin-top: 20px;

16 }

17

18 #sidebar-right{

19 width: 100%;

20 clear: both;

21

22 /* Additional styling for our new layout */

Smashing eBook #9│Mastering CSS for Web Developers │ 221

23 border-top: 1px solid #ccc;

24 margin-top: 20px;

25 }

Smashing eBook #9│Mastering CSS for Web Developers │ 222

Media Queries

CSS3 supports all of the same media types as CSS 2.1, such as screen,
print and handheld, but has added dozens of new media features,
including max-width, device-width, orientation and color. New
devices made after the release of CSS3 (such as the iPad and Android
devices) will definitely support media features. So, calling a media query
using CSS3 features to target these devices would work just fine, and it will
be ignored if accessed by an older computer browser that does not support
CSS3.

In Ethan Marcotte’s article, we see an example of a media query in action:

1 <link rel="stylesheet" type="text/css"

2 media="screen and (max-device-width: 480px)"

3 href="shetland.css" />

This media query is fairly self-explanatory: if the browser displays this page
on a screen (rather than print, etc.), and if the width of the screen (not
necessarily the viewport) is 480 pixels or less, then load shetland.css.

New CSS3 features also include orientation (portrait vs. landscape),
device-width, min-device-width and more. Look at “The Orientation
Media Query” for more information on setting and restricting widths based
on these media query features.

One can create multiple style sheets, as well as basic layout alterations
defined to fit ranges of widths — even for landscape vs. portrait
orientations. Be sure to look at the section of Ethan Marcotte’s article
entitled “Meet the media query” for more examples and a more thorough
explanation.

Smashing eBook #9│Mastering CSS for Web Developers │ 223

http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.quirksmode.org/blog/archives/2010/04/the_orientation.html
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

Multiple media queries can also be dropped right into a single style sheet,
which is the most efficient option when used:

1 /* Smartphones (portrait and landscape) ----------- */

2 @media only screen

3 and (min-device-width : 320px)

4 and (max-device-width : 480px) {

5 /* Styles */

6 }

7

8 /* Smartphones (landscape) ----------- */

9 @media only screen

10 and (min-width : 321px) {

11 /* Styles */

12 }

13

14 /* Smartphones (portrait) ----------- */

15 @media only screen

16 and (max-width : 320px) {

17 /* Styles */

18 }

The code above is from a free template for multiple media queries between
popular devices by Andy Clark. See the differences between this approach
and including different style sheet files in the mark-up as shown in the post
“Hardboiled CSS3 Media Queries.”

CSS3 Media Queries

Above are a few examples of how media queries, both from CSS 2.1 and
CSS3 could work. Let’s now look at some specific how-to’s for using CSS3

Smashing eBook #9│Mastering CSS for Web Developers │ 224

http://stuffandnonsense.co.uk/blog/about/hardboiled_css3_media_queries
http://stuffandnonsense.co.uk/blog/about/hardboiled_css3_media_queries

media queries to create responsive Web designs. Many of these uses are
relevant today, and all will definitely be usable in the near future.

The min-width and max-width properties do exactly what they suggest.
The min-width property sets a minimum browser or screen width that a
certain set of styles (or separate style sheet) would apply to. If anything is
below this limit, the style sheet link or styles will be ignored. The max-
width property does just the opposite. Anything above the maximum
browser or screen width specified would not apply to the respective media
query.

Note in the examples below that we’re using the syntax for media queries
that could be used all in one style sheet. As mentioned above, the most
efficient way to use media queries is to place them all in one CSS style
sheet, with the rest of the styles for the website. This way, multiple requests
don’t have to be made for multiple style sheets.

1 @media screen and (min-width: 600px) {

2 .hereIsMyClass {

3 width: 30%;

4 float: right;

5 }

6 }

The class specified in the media query above (hereIsMyClass) will work
only if the browser or screen width is above 600 pixels. In other words, this
media query will run only if the minimum width is 600 pixels (therefore,
600 pixels or wider).

1 @media screen and (max-width: 600px) {

2 .aClassforSmallScreens {

3 clear: both;

Smashing eBook #9│Mastering CSS for Web Developers │ 225

4 font-size: 1.3em;

5 }

6 }

Now, with the use of max-width, this media query will apply only to
browser or screen widths with a maximum width of 600 pixels or narrower.

While the above min-width and max-width can apply to either screen
size or browser width, sometimes we’d like a media query that is relevant to
device width specifically. This means that even if a browser or other viewing
area is minimized to something smaller, the media query would still apply
to the size of the actual device. The min-device-width and max-device-
width media query properties are great for targeting certain devices with
set dimensions, without applying the same styles to other screen sizes in a
browser that mimics the device’s size.

1 @media screen and (max-device-width: 480px) {

2 .classForiPhoneDisplay {

3 font-size: 1.2em;

4 }

5 }

1 @media screen and (min-device-width: 768px) {

2 .minimumiPadWidth {

3 clear: both;

4 margin-bottom: 2px solid #ccc;

5 }

6 }

There are also other tricks with media queries to target specific devices.
Thomas Maier has written two short snippets and explanations for
targeting the iPhone and iPad only:

Smashing eBook #9│Mastering CSS for Web Developers │ 226

• CSS for iPhone 4 (Retina display)

• How To: CSS for the iPad

For the iPad specifically, there is also a media query property called
orientation. The value can be either landscape (horizontal orientation) or
portrait (vertical orientation).

1 @media screen and (orientation: landscape) {

2 .iPadLandscape {

3 width: 30%;

4 float: right;

5 }

6 }

1 @media screen and (orientation: portrait) {

2 .iPadPortrait {

3 clear: both;

4 }

5 }

Unfortunately, this property works only on the iPad. When determining the
orientation for the iPhone and other devices, the use of max-device-
width and min-device-width should do the trick.

There are also many media queries that make sense when combined. For
example, the min-width and max-width media queries are combined all
the time to set a style specific to a certain range.

Smashing eBook #9│Mastering CSS for Web Developers │ 227

http://thomasmaier.me/2010/06/css-for-iphone-4-retina-display/
http://thomasmaier.me/2010/06/css-for-iphone-4-retina-display/
http://thomasmaier.me/2010/03/howto-css-for-the-ipad/
http://thomasmaier.me/2010/03/howto-css-for-the-ipad/
http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css
http://www.thecssninja.com/css/iphone-orientation-css

1 @media screen and (min-width: 800px) and (max-width:

1200px) {

2 .classForaMediumScreen {

3 background: #cc0000;

4 width: 30%;

5 float: right;

6 }

7 }

The above code in this media query applies only to screen and browser
widths between 800 and 1200 pixels. A good use of this technique is to
show certain content or entire sidebars in a layout depending on how much
horizontal space is available.

Some designers would also prefer to link to a separate style sheet for
certain media queries, which is perfectly fine if the organizational benefits
outweigh the efficiency lost. For devices that do not switch orientation or
for screens whose browser width cannot be changed manually, using a
separate style sheet should be fine.

You might want, for example, to place media queries all in one style sheet
(as above) for devices like the iPad. Because such a device can switch from
portrait to landscape in an instant, if these two media queries were placed
in separate style sheets, the website would have to call each style sheet file
every time the user switched orientations. Placing a media query for both
the horizontal and vertical orientations of the iPad in the same style sheet
file would be far more efficient.

Another example is a flexible design meant for a standard computer screen
with a resizable browser. If the browser can be manually resized, placing all
variable media queries in one style sheet would be best.

Smashing eBook #9│Mastering CSS for Web Developers │ 228

Nevertheless, organization can be key, and a designer may wish to define
media queries in a standard HTML link tag:

1 <link rel="stylesheet" media="screen and (max-width:

600px)" href="small.css" />

2 <link rel="stylesheet" media="screen and (min-width:

600px)" href="large.css" />

3 <link rel="stylesheet" media="print"

href="print.css" />

JavaScript

Another method that can be used is JavaScript, especially as a back-up to
devices that don’t support all of the CSS3 media query options. Fortunately,
there is already a pre-made JavaScript library that makes older browsers (IE
5+, Firefox 1+, Safari 2) support CSS3 media queries. If you’re already using
these queries, just grab a copy of the library, and include it in the mark-up:
css3-mediaqueries.js.

In addition, below is a sample jQuery snippet that detects browser width
and changes the style sheet accordingly — if one prefers a more hands-on
approach:

1 <script type="text/javascript" src="http://

ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js "></

script>

2

3 <script type="text/javascript">

4 $(document).ready(function(){

5 $(window).bind("resize", resizeWindow);

6 function resizeWindow(e){

Smashing eBook #9│Mastering CSS for Web Developers │ 229

http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js
http://code.google.com/p/css3-mediaqueries-js/
http://code.google.com/p/css3-mediaqueries-js/

7 var newWindowWidth = $(window).width();

8

9 // If width width is below 600px, switch to the

mobile stylesheet

10 if(newWindowWidth < 600){ $

("link[rel=stylesheet]").attr({href :

"mobile.css"}); } // Else if

width is above 600px, switch to the large stylesheet

else if(newWindowWidth > 600){

11 $("link[rel=stylesheet]").attr({href :

"style.css"});

12 }

13 }

14 });

15 </script>

There are many solutions for pairing up JavaScript with CSS media queries.
Remember that media queries are not an absolute answer, but rather are
fantastic options for responsive Web design when it comes to pure CSS-
based solutions. With the addition of JavaScript, we can accommodate far
more variations. For detailed information on using JavaScript to mimic or
work with media queries, look at “Combining Media Queries and
JavaScript.”

Showing or Hiding Content

It is possible to shrink things proportionally and rearrange elements as
necessary to make everything fit (reasonably well) as a screen gets smaller.
It’s great that that’s possible, but making every piece of content from a
large screen available on a smaller screen or mobile device isn’t always the

Smashing eBook #9│Mastering CSS for Web Developers │ 230

http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html
http://www.quirksmode.org/blog/archives/2010/08/combining_media.html

best answer. We have best practices for mobile environments: simpler
navigation, more focused content, lists or rows instead of multiple columns.

Responsive Web design shouldn’t be just about how to create a flexible
layout on a wide range of platforms and screen sizes. It should also be
about the user being able to pick and choose content. Fortunately, CSS has
been allowing us to show and hide content with ease for years!

1 display: none;

Either declare display: none for the HTML block element that needs to
be hidden in a specific style sheet or detect the browser width and do it
through JavaScript. In addition to hiding content on smaller screens, we can
also hide content in our default style sheet (for bigger screens) that should
be available only in mobile versions or on smaller devices. For example, as
we hide major pieces of content, we could replace them with navigation to
that content, or with a different navigation structure altogether.

Note that we haven’t used visibility: hidden here; this just hides the
content (although it is still there), whereas the display property gets rid
of it altogether. For smaller devices, there is no need to keep the mark-up
on the page — it just takes up resources and might even cause unnecessary
scrolling or break the layout.

Smashing eBook #9│Mastering CSS for Web Developers │ 231

Smashing eBook #9│Mastering CSS for Web Developers │ 232

Here is our mark-up:

1 <p class="sidebar-nav">Left Sidebar

Content | Right Sidebar Content</

p>

2

3 <div id="content">

4 <h2>Main Content</h2>

5 </div>

6

7 <div id="sidebar-left">

8 <h2>A Left Sidebar</h2>

9

10 </div>

11

12 <div id="sidebar-right">

13 <h2>A Right Sidebar</h2>

14 </div>

In our default style sheet below, we have hidden the links to the sidebar
content. Because our screen is large enough, we can display this content on
page load.

Here is the style.css (default) content:

1 #content{

2 width: 54%;

3 float: left;

4 margin-right: 3%;

5 }

6

7 #sidebar-left{

Smashing eBook #9│Mastering CSS for Web Developers │ 233

8 width: 20%;

9 float: left;

10 margin-right: 3%;

11 }

12

13 #sidebar-right{

14 width: 20%;

15 float: left;

16 }

17 .sidebar-nav{display: none;}

Now, we hide the two sidebars (below) and show the links to these pieces
of content. As an alternative, the links could call to JavaScript to just cancel
out the display: none when clicked, and the sidebars could be
realigned in the CSS to float below the content (or in another reasonable
way).

Here is the mobile.css (simpler) content:

1 #content{

2 width: 100%;

3 }

4

5 #sidebar-left{

6 display: none;

7 }

8

9 #sidebar-right{

10 display: none;

11 }

12 .sidebar-nav{display: inline;}

Smashing eBook #9│Mastering CSS for Web Developers │ 234

With the ability to easily show and hide content, rearrange layout elements
and automatically resize images, form elements and more, a design can be
transformed to fit a huge variety of screen sizes and device types. As the
screen gets smaller, rearrange elements to fit mobile guidelines; for
example, use a script or alternate style sheet to increase white space or to
replace image navigation sources on mobile devices for better usability
(icons would be more beneficial on smaller screens).

Touchscreens vs. Cursors

Touchscreens are becoming increasingly popular. Assuming that smaller
devices are more likely to be given touchscreen functionality is easy, but
don’t be so quick. Right now touchscreens are mainly on smaller devices,
but many laptops and desktops on the market also have touchscreen
capability. For example, the HP Touchsmart tm2t is a basic touchscreen
laptop with traditional keyboard and mouse that can transform into a
tablet.

Touchscreens obviously come with different design guidelines than purely
cursor-based interaction, and the two have different capabilities as well.
Fortunately, making a design work for both doesn’t take a lot of effort.
Touchscreens have no capability to display CSS hovers because there is no
cursor; once the user touches the screen, they click. So, don’t rely on CSS
hovers for link definition; they should be considered an additional feature
only for cursor-based devices.

Look at the article “Designing for Touchscreen” for more ideas. Many of the
design suggestions in it are best for touchscreens, but they would not
necessarily impair cursor-based usability either. For example, sub-
navigation on the right side of the page would be more user-friendly for

Smashing eBook #9│Mastering CSS for Web Developers │ 235

http://www.whatcreative.co.uk/blog/tips/designing-for-touch-screen/
http://www.whatcreative.co.uk/blog/tips/designing-for-touch-screen/

touchscreen users, because most people are right-handed; they would
therefore not bump or brush the navigation accidentally when holding the
device in their left hand. This would make no difference to cursor users, so
we might as well follow the touchscreen design guideline in this instance.
Many more guidelines of this kind can be drawn from touchscreen-based
usability.

Smashing eBook #9│Mastering CSS for Web Developers │ 236

The Future Of CSS: Experimental CSS
Properties
Christian Krammer

Despite contemporary browsers supporting a wealth of CSS3 properties,
most designers and developers seem to focus on the quite harmless
properties such as border-radius, box-shadow or transform. These
are well documented, well tested and frequently used, and so it’s almost
impossible to not stumble on them these days if you are designing
websites.

But hidden deep within the treasure chests of browsers are advanced,
heavily underrated properties that don’t get that much attention. Perhaps
some of them rightly so, but others deserve more recognition. The greatest
wealth lies under the hood of WebKit browsers, and in the age of iPhone,
iPad and Android apps, getting acquainted with them can be quite useful.
Even the Gecko engine, used by Firefox and the like, provides some distinct
properties. In this article, we will look at some of the less known CSS 2.1
and CSS3 properties and their support in modern browsers.

Some explanation: For each property, I state the support: “WebKit” means
that it is available only in browsers that use the WebKit engine (Safari,
Chrome, iPhone, iPad, Android), and “Gecko” indicates the availability in
Firefox and the like. Finally, certain properties are part of the official CSS 2.1.
specification, which means that a broad range of browsers, even older ones,
support them. Finally, a label of CSS3 indicates adherence to this
specification, supported by the latest browser versions, such as Firefox 4,
Chrome 10, Safari 5, Opera 11.10 and Internet Explorer 9.

Smashing eBook #9│Mastering CSS for Web Developers │ 237

http://www.w3.org/TR/CSS21
http://www.w3.org/TR/CSS21
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work

WebKit-Only Properties

-webkit-mask

This property is quite extensive, so a detailed description is beyond the
scope of this article and is certainly worth a more detailed examination,
especially because it could turn out to be a time-saver in practical
applications.

-webkit-mask makes it possible to apply a mask to an element, thereby
enabling you to create a cut-out of any shape. The mask can either be a
CSS3 gradient or a semi-transparent PNG image. An alpha value of 0 would
cover the underlying element, and 1 would fully reveal the content behind.
Related properties like -webkit-mask-clip, -webkit-mask-
position and -webkit-mask-repeat rely heavily on the syntax of the
ones from background. For more info, see the Surfin’ Safari blog and the
link below.

Smashing eBook #9│Mastering CSS for Web Developers │ 238

http://www.w3schools.com/css/pr_background.asp
http://www.w3schools.com/css/pr_background.asp
http://www.webkit.org/blog/181/css-masks
http://www.webkit.org/blog/181/css-masks

Example

Image mask:

1 .element {

2 background: url(img/image.jpg) repeat;

3 -webkit-mask: url(img/mask.png);

4 }

Example

Gradient mask:

1 .element2 {

2 background: url(img/image.jpg) repeat;

3 -webkit-mask: -webkit-gradient(linear, left top, left

bottom, from(rgba(0,0,0,1)), to(rgba(0,0,0,0)));

4 }

-webkit-text-stroke

One of the shortcomings of CSS borders is that only rectangular ones are
possible. A ray of hope is -webkit-text-stroke, which gives text a
border. Setting not only the width but the color of the border is possible.
And in combination with color: transparent, you can create outlined
text.

Examples

Assigns a blue border with a 2-pixel width to all <h1> headings:

1 h1 {-webkit-text-stroke: 2px blue}

Smashing eBook #9│Mastering CSS for Web Developers │ 239

Another feature is the ability to smooth text by setting a transparent border
of 1 pixel:

1 h2 {-webkit-text-stroke: 1px transparent}

Creates text with a red outline:

1 h3 {

2 color: transparent;

3 -webkit-text-stroke: 4px red;

4 }

-webkit-nbsp-mode

Wrapping can be pretty tricky. Sometimes you want text to break (and not
wrap) at certain points, and other times you don’t want this to happen. One
property to control this is -webkit-nbsp-mode. It lets you change the
behavior of the character, forcing text to break even where it is
used. This behavior is enabled by the value space.

-webkit-tap-highlight-color

This one is just for iOS (iPhone and iPad). When you tap on a link or a
JavaScript clickable element, it is highlighted by a semi-transparent gray
background. To override this behavior, you can set -webkit-tap-
highlight-color to any color. To disable this highlighting, a color with
an alpha value of 0 must be used.

Smashing eBook #9│Mastering CSS for Web Developers │ 240

Example

Sets the highlight color to red, with a 50% opacity:

1 -webkit-tap-highlight-color: rgba(255,0,0,0.5)

Supported by: iOS only (iPhone and iPad).

zoom: reset

Normally, zoom is an Internet Explorer-only property. But in combination
with the value reset, WebKit comes into play (which, funny enough, IE
doesn’t support). It enables you to override the standard behavior of
zooming on websites. If set with a CSS declaration, everything except the
given element is enlarged when the user zooms on the page.

-webkit-margin-collapse

Here is a property with a quite limited practical use, but it is still worth
mentioning. By default, the margins of two adjacent elements collapse,
which means that the bottom distance of the first element and the top
distance of the second element merge into a single gap.

The best example is two <p>s that share their margins when placed one
after another. To control this behavior, we can use -webkit-margin-
collapse, -webkit-margin-top-collapse or -webkit-margin-
bottom-collapse. The standard value is collapse. The separate
value stops the sharing of margins, which means that both the bottom
margin of the first element and the top margin of the second are included.

Smashing eBook #9│Mastering CSS for Web Developers │ 241

http://reference.sitepoint.com/css/zoom
http://reference.sitepoint.com/css/zoom

-webkit-box-reflect

Do you remember the days when almost every website featured a reflection
of either its logo or some text in the header? Thankfully, those days are
gone, but if you’d like to make a subtle use of this technique for your
buttons, navigation or other UI elements with CSS, then -webkit-box-
reflect is the property for you.

It accepts the keywords above, below, left and right, which set where
the reflection is drawn, as well as a numeric value that sets the distance
between the element and its reflection. Beyond that, mask images are
supported as well (see -webkit-mask for an explanation of masks). The
reflection is created automatically and has no effect on the layout.
Following elements are created using only CSS, and the second button is
reflected using the -webkit-box-reflect-property.

Smashing eBook #9│Mastering CSS for Web Developers │ 242

Examples

This reflection would be shown under its parent element and have a
spacing of 5 pixels:

1 -webkit-box-reflect: below 5px;

This reflection would be cast on the right side of the element, with no
distance (0); additionally, a mask would be applied (url(mask.png)):

1 -webkit-box-reflect: right 0 url(mask.png);

-webkit-marquee

Here is another property that recalls the good ol’ days when marquees
were quite common. Interesting that this widely dismissed property turns
out to be be useful today, when we shift content on tiny mobile screens
that would otherwise not be fully visible without wrapping.

Smashing eBook #9│Mastering CSS for Web Developers │ 243

The weather application by ozPDA makes great use of it. (If you don’t see
shifting text, just select another city at the bottom of the app. WebKit
browser required.)

Example

1 .marquee {

2 white-space: nowrap;

3 overflow:-webkit-marquee;

4 width: 70px;

5 -webkit-marquee-direction: forwards;

6 -webkit-marquee-speed: slow;

7 -webkit-marquee-style: alternate;

8 }

There are some prerequisites for the marquee to work. First, white-space
must be set to nowrap if you want the text to be on one line. Also,
overflow must be set to -webkit-marquee, and width set to
something narrower than the full length of the text.

The remaining properties ensure that the text scrolls from left to right (-
webkit-marquee-direction), shifts back and forth (-webkit-
marquee-style) and moves at a slow rate (-webkit-marquee-speed).
Additional properties are -webkit-marquee-repetition, which sets
how many iterations the marquee should pass through, and -webkit-
marquee-increment, which defines the degree of speed in each
increment.

Smashing eBook #9│Mastering CSS for Web Developers │ 244

http://i.ozpda.com/ozweather/
http://i.ozpda.com/ozweather/

Gecko-Only Properties

font-size-adjust

Unfortunately, this useful CSS3 property is supported only by Firefox at the
moment. We can use it to specify that the font size for a given element
should relate to the height of lowercase letters (x-height) rather than the
height of uppercase letters (cap height). For example, Verdana is much
more legible at the same size than Times, which has a much shorter x-
height. To compensate for this behavior, we can adjust the latter with
font-size-adjust.

This property is particularly useful in CSS font stacks whose fonts have
different x-heights. Even if you’re careful to use only similar fonts, font-
size-adjust can provide a solution when problems arise.

Example

If Verdana is not installed on the user’s machine for some reason, then Arial
is adjusted so that it has the same aspect ratio as Verdana, which is 0.58 (at
a font size of 12px, differs on other sizes).

1 p {

2 font-family:Verdana, Arial, sans-serif;

3 font-size: 12px;

4 font-size-adjust: 0.58;

5 }

Smashing eBook #9│Mastering CSS for Web Developers │ 245

Supported by: Gecko.

image-rendering

A few years ago, images that were not displayed at their original size and
were scaled by designers, could appear unattractive or just plain wrong in
the browser, depending on the size and context. Nowadays, browsers have
a much better algorithm for displaying resized images, however, it’s great to
have a full control over the ways your images will be displayed when scaled,
especially with responsive images becoming a de facto standard in
responsive Web designs.

This Gecko-specific property is particularly useful if you have an image with
sharp lines and want to maintain them after resizing. The relevant value
would be -moz-crisp-edges. The same algorithm is used at
optimizeSpeed, whereas auto and optimizeQuality indicate the
standard behavior (which is to resize elements with the best possible
quality). The image-rendering property can also be applied to <video>
and <canvas> elements, as well as background images. It is a CSS3
property, but is currently supported only by Firefox.

Smashing eBook #9│Mastering CSS for Web Developers │ 246

It’s also worth mentioning -ms-interpolation-mode: bicubic,
although it is a proprietary Internet Explorer property. Nevertheless, it
enables Internet Explorer 7 to render images at a much higher quality after
resizing which is useful because by default this browser handles such tasks
pretty poorly.

Supported by: Gecko.

-moz-border-top-colors

This property could be filed under ‘eye-candy’. It allows you to assign
different colors to borders that are wider than 1 pixel. Also available are -
moz-border-bottom-colors, -moz-border-left-colors and -
moz-border-right-colors.

Smashing eBook #9│Mastering CSS for Web Developers │ 247

Unfortunately, there is no condensed version like -moz-border-colors
for this property, so the border property must be set in order for it to
work, whereas border-width should be the same as the number of the
given color values. If it is not, then the last color value is taken for the rest
of the border.

Example

Below, the element’s border would have a standard color of orange applied
to the left and right side (because -moz-border-left-colors and -
moz-border-right-colors are not set). The top and bottom borders
have a kind of gradient, with the colors red, yellow and blue.

1 div {

2 border: 3px solid orange;

3 -moz-border-top-colors: red yellow blue;

4 -moz-border-bottom-colors: red yellow blue;

5 }

Supported by: Gecko.

Smashing eBook #9│Mastering CSS for Web Developers │ 248

Mixed Properties

-webkit-user-select and -moz-user-select

There might be times when you don’t want users to be able to select text,
whether to protect it from copying or for another reason. One solution is to
set -webkit-user-select and -moz-user-select to none. Please
use this property with caution: since most users are looking for information
that they can copy and store for future reference, this property is neither
helpful nor effective. In the end, the user could always look up the source
code and take the content even if you have forbidden the traditional copy-
and-paste. We do not know why this property exists in both WebKit and
Gecko browsers.

Supported by: WebKit, Gecko.

-webkit-appearance and -moz-appearance

Ever wanted to easily camouflage an image to look like a radio button? Or
an input field to look like a checkbox? Then appearance will come in
handy. Even if you wouldn’t always want to mask a link so that it looks like a
button (see example below), it’s nice to know that you can do it if you want.

Example

1 a {

2 -webkit-appearance: button;

3 -moz-appearance: button;

4 }

Supported by: WebKit, Gecko.

Smashing eBook #9│Mastering CSS for Web Developers │ 249

text-align: -webkit-center/-moz-center

This is one property (or value, to be exact) whose existence is quite
surprising. To center a block-level element, one would usually set margin
to 0 auto. But you could also set the text-align property of the
element’s container to -moz-center and -webkit-center. You can
align left and right with -moz-left and -webkit-left and then -moz-
right and -webkit-right, respectively.

Supported by: WebKit, Gecko.

CSS 2.1. Properties

counter-increment

How often have you wished you could automatically number an ordered list
or all of the headings in an article? Unfortunately, there is still no CSS3
property for that. But let’s look back to CSS 2.1, in which counter-
increment provides a solution. That means it’s been around for several
years, and even supported in Internet Explorer 8. Did you know that? Me
neither.

In conjunction with the :before pseudo-element and the content
property, counter-increment can add automatic numbering to any
HTML tag. Even nested counters are possible.

Example

For numbered headings, first reset the counter to start at 1:

1 body {counter-reset: thecounter}

Smashing eBook #9│Mastering CSS for Web Developers │ 250

Every <h1> would get the prefix “Section,” including a counter that
automatically increments by 1 (which is default and can be omitted), where
thecounter is the name of the counter:

1 .counter h1:before {

2 counter-increment: thecounter 1;

3 content:"Section"counter(thecounter)":";

4 }

Example

For a nested numbered list, the counter is reset and the automatic
numbering of is switched off because it features no nesting:

1 ol {

2 counter-reset: section;

3 list-style-type: none;

4 }

Then, every is given automatic incrementation, and the separator is
set to be a point (.), followed by a blank.

1 li:before {

2 counter-increment: section;

3 content: counters(section,".")"";

4 }

Smashing eBook #9│Mastering CSS for Web Developers │ 251

1

2 item <!-- 1 -->

3 item <!-- 2 -->

4

5 item <!-- 1.1 -->

6 item <!-- 1.2 -->

7

8

9 item <!-- 3 -->

10

Supported by: CSS 2.1., all modern browsers, IE 7+.

quotes

Are you tired of using wrong quotes just because your CMS doesn’t know
how to properly convert them to the right ones? Then start using the
quotes property to set them how you want. This way, you can use any
character. You would then assign the quotes to the desired element using
the :before and :after pseudo-elements. Unfortunately, the otherwise
progressive WebKit browsers don’t support this property, which means no
quotes are shown at all.

Example

The first two characters determine the quotes for the first level of a
quotation, the last two for the second level, and so on:

1 q {

2 quotes: '«' '»' "‹" "›";

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 252

These two lines assign the quotes to the selected element:

1 q:before {content: open-quote}

2 q:after {content: close-quote}

So, <p><q>This is a very <q>nice</q> quote.</q></p> would give us:
«This is a very ‹nice› quote.»

Supported by: CSS 2.1., all browsers except WebKit, even IE 7+.

Question: To add the character directly, does the CSS document have to
have a UTF-8 character set? That’s a tough one. Unfortunately, I can’t give a
definitive answer. My experimentation has shown that no character set has
to be set for the quotes property to work properly. However the utf-8
character set doesn’t work because it shows “broken” characters (for
example, “»”). With the iso-8859-1 character set, everything works fine.

This is how the W3C describes it: “While the quotation marks specified by
‘quotes’ in the previous examples are conveniently located on computer
keyboards, high-quality typesetting would require different ISO 10646
characters.”

CSS3 Properties You May Have Heard About But Can’t
Remember

To round out things, let’s go over some CSS3 properties that are not well
known and maybe not as appealing as the classic ones border-radius
and box-shadow.

Smashing eBook #9│Mastering CSS for Web Developers │ 253

http://www.w3.org/TR/CSS21/generate.html
http://www.w3.org/TR/CSS21/generate.html

text-overflow

Perhaps you’re familiar with this problem: a certain area is too small for the
text that it contains, and you have to use JavaScript to cut the string and
append “…” so that it doesn’t blow out the box.

Forget that! With CSS3 and text-overflow: ellipsis, you can force
text to automatically end with “…” if it is longer than the width of the
container. The only requirement is to set overflow to hidden.
Unfortunately, this is not supported by Firefox but will hopefully be
implemented in a coming release.

Example

1 div {

2 width: 100px;

3 text-overflow: ellipsis;

4 }

Supported by: CSS 3, all browsers except Firefox, even IE6+.

Smashing eBook #9│Mastering CSS for Web Developers │ 254

word-wrap

With text in a narrow column, sometimes portions of it are too long to wrap
correctly. Link URLs especially cause trouble. If you don’t want to hide the
overflowing text with overflow: hidden, then you can set word-wrap
to break-word, which causes it to break when it reaches the limit of the
container.

Example

1 div {

2 width: 50px;

3 word-wrap: break-word;

4 }

Supported by: CSS 3, all browsers, even IE6+.

Smashing eBook #9│Mastering CSS for Web Developers │ 255

resize

If you use Firefox or Chrome, then you must have noticed that text areas by
default have a little handle in the bottom-right corner that lets you resize
them. This standard behavior is achieved by the CSS3 property resize:
both.

But it’s not limited to text areas. It can be used on any HTML element. The
horizontal and vertical values limit the resizing to the horizontal and
vertical axes, respectively. The only requirement is that overflow be set to
anything other than visible.

Supported by: CSS3, all the latest browsers except Opera and Internet
Explorer.

background-attachment

When you assign a background image to an element that is set to
overflow: auto, it is fixed to the background and doesn’t scroll. To
disable this behavior and enable the image to scroll with the content, set
background-attachment to local.

Smashing eBook #9│Mastering CSS for Web Developers │ 256

Supported by: CSS 3, all the latest browsers except Firefox.

text-rendering

With more and more websites rendering fonts via the @font-face
attribute, legibility becomes a concern. Problems can occur particularly at
small font sizes. While there is still no CSS property to control the subtle
details of displaying fonts online, you can enable kerning and ligatures via
text-rendering.

Gecko and WebKit browsers handle this property quite differently. The
former enables these features by default, while you have to set it to
optimizeLegibility in the latter.

Smashing eBook #9│Mastering CSS for Web Developers │ 257

http://en.wikipedia.org/wiki/Kerning
http://en.wikipedia.org/wiki/Kerning
http://en.wikipedia.org/wiki/Typographic_ligature
http://en.wikipedia.org/wiki/Typographic_ligature

Supported by: CSS3, all WebKit browsers and Firefox.

transform: rotateX/transform: rotateY

If you’ve already dived into CSS3 and transformations a bit, then you’re
probably familiar with transform: rotate(), which rotates an element
around its z-axis.

But did you know that it is also possible to spin it “into the deep” (i.e.
around its x-axis and y-axis)? These transformations are particularly useful
in combination with -webkit-backface-visibility: hidden, if you
want to rotate an element and reveal another one at its back. This
technique is described by Andy Clarke in his latest book, Hardboiled Web
Design, and it can be seen in action on a demo page.

Example

If you hover over the element, it will turn by 180°, revealing its back:

1 div:hover {

2 transform: rotateY(180deg);

3 }

Smashing eBook #9│Mastering CSS for Web Developers │ 258

http://hardboiledwebdesign.com/v/c18-16
http://hardboiledwebdesign.com/v/c18-16

Quick tip: To just mirror an element, you can either set transform to
rotateX(180deg) (and respectively rotateY) or set transform to
scaleX(-1) (and respectively scaleY).

Supported by: CSS3, only WebKit browsers, in combination with -
webkit-backface-visibility only Safari and iOS (iPhone and iPad).

Some Last Words

As you hopefully have seen, there are many unknown properties that range
from being nice to have to being very useful. Many of them are still at an
experimental stage and may never leave it or even be discarded in future

Smashing eBook #9│Mastering CSS for Web Developers │ 259

browser releases. Others will hopefully be adopted by all browser
manufacturers in coming versions.

While it is hard to justify using some of them, the WebKit-specific ones are
gaining more and more importance with the success of the iOS devices and
Android. And of course some CSS3 properties are more or less ready to be
used now.

And if you don’t like vendor-specific properties, you can see them as
experiments that still could be implemented in the code to improve the
user experience for users browsing with the modern browsers. By the way,
CSS validator from the W3C now also supports vendor-specific properties,
which result in warnings rather than errors.

Happy experimenting!

Smashing eBook #9│Mastering CSS for Web Developers │ 260

http://lists.w3.org/Archives/Public/www-validator-css/2011Jan/0020.html
http://lists.w3.org/Archives/Public/www-validator-css/2011Jan/0020.html

Technical Web Typography: Guidelines
and Techniques
Harry Roberts

The Web is 95% typography, or so they say. I think this is a pretty accurate
statement: we visit websites largely with the intention of reading. That’s
what you’re doing now — reading. With this in mind, does it not stand to
reason that your typography should be one of the most considered aspects
of your designs?

Unfortunately, for every person who is obsessed with even the tiniest
details of typography, a dozen or so people seem to be indifferent. It’s a
shame; if you’re going to spend time writing something, don’t you want it
to look great and be easy to read?

Creative and Technical Typography

I’m not sure these two categories are recognized in the industry but, in my
mind, the two main types of typography are creative and technical.

Creative typography involves making design decisions such as which face to
use, what mood the type should create, how it should be set, what tone it
should have — for example, should it be airy, spacious and open (light) or
condensed, bold and tight, with less white space (dark)? These decisions
must be made on a per-project basis. You probably wouldn’t use the same
font on a girl’s party invitation and an obituary. For me, this is creative
typography: it is design-related and changes according to its application.

Smashing eBook #9│Mastering CSS for Web Developers │ 261

http://www.informationarchitects.jp/en/the-web-is-all-about-typography-period/
http://www.informationarchitects.jp/en/the-web-is-all-about-typography-period/

Technical typography is like type theory; certain rules and practices apply to
party invitations just as well as they do to obituaries. These are little rules
that always hold, are proven to work and are independent of design. The
good news is that, because they are rules, even the most design-challenged
people can make use of them and instantly raise the quality of their text
from bog-standard to bang-tidy.

We’ll focus on technical type in this article. We’ll discuss the intricacies and
nuances of a small set of rules while learning the code to create them.

We’ll learn about:

• How to choose a font face

• How to choose a font size

• Using a grid

• Working out the measure

• Vertical rhythm and baseline grids

• Choosing a typographic scale

• How to use proper quotes

• How to use proper dashes

• How to use proper ellipses

• How to hang punctuation

• Dealing with images in grids

Fair warning: this is an in-depth article. It requires some basic CSS
knowledge. If you’d rather learn a little at a time, use the links above to
jump from section to section.

Smashing eBook #9│Mastering CSS for Web Developers │ 262

If any of the code examples seem out of context or confusing, then here is
the final piece that we’re going to create (merely for your reference).

Setting Things Up

To begin, copy and paste this into an index.html file, and save it to your
desktop:

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <title>Your Name</title>

6 <link rel="stylesheet" type="text/css" href="css/

style.css" />

7 </head>

8 <body>

9

10 <h1>Your Name</h1>

11

12 </body>

13 </html>

Next, copy and paste this (slightly modified) CSS reset into your style.css
sheet, and save that to your machine, too:

1 /*------------------------------------*\

2 RESET

3 *------------------------------------*/

4 body, div, dl, dt, dd, ul, ol, li,

5 h1, h2, h3, h4, h5, h6,

Smashing eBook #9│Mastering CSS for Web Developers │ 263

http://coding.smashingmagazine.com/wp-content/uploads/technical-type/index.html
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/index.html
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/index.html
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/index.html

6 pre, form, fieldset, input, textarea,

7 p, blockquote, th, td {

8 margin: 0;

9 padding: 0;

10 }

11 table {

12 border-collapse: collapse;

13 border-spacing: 0;

14 }

15 fieldset, img {

16 border: 0;

17 }

18 address, caption, cite, dfn, th, var {

19 font-style: normal;

20 font-weight: normal;

21 }

22 caption, th {

23 text-align: left;

24 }

25 h1, h2, h3, h4, h5, h6 {

26 font-size: 100%;

27 font-weight: normal;

28 }

29 q:before, q:after {

30 content: '';

31 }

32 abbr, acronym {

33 border: 0;

34 }

35

36 /*------------------------------------*\

Smashing eBook #9│Mastering CSS for Web Developers │ 264

37 MAIN

38 *------------------------------------*/

39 html {

40 background: #fff;

41 color: #333;

42 }

Choosing A Font Face

First, let’s choose a face in which to set our project. There is, as you know, a
solid base of Web-safe fonts to choose from. There are also amazing
services like Fontdeck and Typekit that leverage @font-face to add non-
standard fonts in a fairly robust way.

We’re not going to use any of those, though. To prove that technical type
can make anything look better, let’s restrict ourselves to a typical font stack.

Let’s use a serif stack for this project, because technical type works wonders
on serif faces:

1 html {

2 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

3 background: #fff;

4 color: #333;

5 }

Cambria is a beautiful font, specifically designed for on-screen reading and
to be aesthetically pleasing when printed at small sizes. If you want to alter
this or use a sans-serif stack, be my guest.

Smashing eBook #9│Mastering CSS for Web Developers │ 265

http://fontdeck.com/
http://fontdeck.com/
http://typekit.com/
http://typekit.com/

On Using Helvetica

If you’d like to use Helvetica in your stack, remember that Helvetica looks
awful as body copy on a PC. To alleviate this, use the following trick to serve
Helvetica to Macs and Arial to PCs (you can find more details about this
trick in Chris Coyier’s recent article Sans-Serif):

1 html {

2 font-family: sans-serif; /* Serve the machine’s

default sans face. */

3 background: #fff;

4 color: #333;

5 }

Beware! This is a hack. It works by using a system’s default sans font as the
font for the page. By default, a Mac will use Helvetica and a PC will use
Arial. However, if a user has changed their system preferences, this will not
be the case, so use with caution.

Choosing A Font Size

Oliver Reichenstein authored an inspiring article, way back in 2006, stating
that the ideal size for type on the Web is 16 pixels: the user agents’
standard. This insightful article changed the way I work with type; it’s well
worth a read. We’ll use 16 pixels as a base size, then. If you want to use
another font size, feel free, but if you stick with 16 pixels, your CSS should
look something like this:

Smashing eBook #9│Mastering CSS for Web Developers │ 266

http://csswizardry.com/type-tips/#tip-01
http://csswizardry.com/type-tips/#tip-01
http://csswizardry.com/type-tips/#tip-01
http://csswizardry.com/type-tips/#tip-01
http://css-tricks.com/sans-serif/
http://css-tricks.com/sans-serif/
http://www.informationarchitects.jp/en/100e2r/
http://www.informationarchitects.jp/en/100e2r/

1 html {

2 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

3 background: #fff;

4 color: #333;

5 }

If you want to use, say, 12 pixels, it will look like this:

1 html {

2 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

3 font-size: 0.75em; /* 16 * 0.75 = 12 */

4 background: #fff;

5 color: #333;

6 }

You’ll be left with a basic layout (demo).

Choosing A Grid System

The grid is an amazing tool, and it’s not just for typographical ventures. It
ensures order and harmony in your designs.

Some grid systems out there, in my opinion, go a little overboard and offer
30 or more columns, all awkwardly sized. For this tutorial, we’ll use Nathan
Smith’s 16-column 960 Grid System (demo). 960.gs is amazing; its beauty
lies in its simplicity. It is an ideal size for designs narrower than 1020 pixels,
it has a good number of columns, and the numbers are easy to work with.
You might also notice that the 960 Grid System only has 940 pixels of
usable space. “960” comes from the 10 pixels of gutter space on either side.

Smashing eBook #9│Mastering CSS for Web Developers │ 267

http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/full/01.jpg
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/full/01.jpg
http://sonspring.com/
http://sonspring.com/
http://sonspring.com/
http://sonspring.com/
http://960.gs/
http://960.gs/
http://960.gs/demo.html
http://960.gs/demo.html

Update your CSS to use a guide background image:

1 html {

2 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

3 background: url(…/img/css/grid-01.png) center top

repeat-y #fff;

4 color: #333;

5 width: 940px;

6 padding: 0 10px;

7 margin: 0 auto;

8 }

You should now have something like this:

Smashing eBook #9│Mastering CSS for Web Developers │ 268

http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/css/grid-01.png
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/css/grid-01.png

Choosing A Measure

We have our font size, so now we need to work out our ideal line length, or
“measure.” Robert Bringhurst writes in The Elements of Typographic Style
that, “anything from 45 to 75 characters is widely regarded as a satisfactory
length of line….”

A measure that is too short causes the eye to jump awkwardly from the end
of line x to the start of line x + 1, and a measure that’s too long can cause
the reader’s eye to double back. You can circumvent this somewhat by
following these rules of thumb:

• for a longer measure, use slightly greater leading

• for a shorter measure, use slightly smaller leading

So, a measure of 45 to 75 characters is the optimum for readability in
columns of text. I can pretty much guarantee that after you learn this, every
massively, overly long measure you see on the Web will annoy you
spectacularly.

Here are 69 characters, a nice middle ground between the recommended
45 and 75:

1 Lorem ipsum dolor sit amet, consectetuer adipiscing

elit accumsan

Paste that into your page, and count how many red columns it covers. This
is how wide your measure will be:

Smashing eBook #9│Mastering CSS for Web Developers │ 269

Here we have text spanning eight columns, which is 460 pixels of 960.gs.
Update your CSS to read as follows:

1 /*------------------------------------*\

2 MAIN

3 *------------------------------------*/

4

5 html {

6 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

7 background: url(…/img/css/grid-01.png) center top

repeat-y #fff;

8 color: #333;

9 }

10

11 body {

Smashing eBook #9│Mastering CSS for Web Developers │ 270

12 width: 460px;

13 margin: 0 auto;

14 }

If you picked a font size other than 16 pixels, make sure your measurements
reflect this!

Vertical Rhythm: Setting A Baseline

Leading (which rhymes with “wedding”) is a typographical term from way
back when typographers manually set type in letterpress machines and the
like. The term refers to the act of placing lead between lines of type in order
to add vertical space. In CSS, we call this line-height.

Smashing eBook #9│Mastering CSS for Web Developers │ 271

Line height should be around 140%. This isn’t a great number to work with,
and it’s only a general rule, so we’ll use 150% (or 1.5 em). This way, we
simply need to multiply the font size by one and a half to determine our
leading.

Some general rules for leading:

• with continuous copy, use large leading

• with light text on dark background, use large leading

• with long line lengths, use large leading

• with large x-height, use large leading

• with short burst of information, use small leading

If you used a 16-pixel font size, then your line height will be 24 pixels (16
pixels × 1.5 em = 24 pixels). If you used a 12-pixel font size, then your line
height will be 18 pixels (12 pixels × 1.5 em = 18 pixels).

The Magic Number

For math-based tips on typography, check out this video on Web type by
Tim Brown. The fun starts at 13:35.

The pixel value for your line height (24 pixels) will now be your magic
number. This number means everything to your design. All line heights and
margins will be this number or multiples thereof. I find it useful to always
keep it in mind and stick to it.

Now that we know our general line height, we can define a baseline grid.
The grid we currently have aligns only the elements in the y axis (up and
down). A baseline grid aligns in the x axis, too. We need to update our

Smashing eBook #9│Mastering CSS for Web Developers │ 272

http://vimeo.com/17079380
http://vimeo.com/17079380

background image now to be 24 pixels high and have a solid 1-pixel line at
the bottom, like this.

Again, if you chose a font size of 12 pixels and your line height became 18
pixels, then your background image needs to be 18 pixels high with a solid
horizontal line on the 18th row of pixels.

Your CSS should now look something like this:

1 html {

2

3 }

4

5 body {

6 width: 460px;

7 margin: 0 auto;

8 line-height: 1.5em;

9 }

Your page should now look something like this:

Smashing eBook #9│Mastering CSS for Web Developers │ 273

http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/css/grid.png
http://coding.smashingmagazine.com/wp-content/uploads/technical-type/img/css/grid.png

As you can see, the text hovers slightly above the horizontal guideline. This
doesn’t mean that anything is set incorrectly; it is merely the offset. This
could hinder the process, so either tweak the padding on the body to
move the page or alter the position of the background image to move it
around a little. Some tinkering in Firebug tells me that the CSS needs to be
as follows:

1 html {

2

3 background: url(…/img/css/grid.png) center -6px

repeat-y #fff;

4

5 }

That gives me the following — and everything lines up perfectly:

Smashing eBook #9│Mastering CSS for Web Developers │ 274

Now, let’s get back to the magic number. Maybe you think the text is sitting
too close to the top of the screen? Well, to remedy that, we’ll move the text
down the page by a multiple of that magic number — let’s say 72 (3 × 24 =
72 pixels). Now adjust your CSS to read:

1 body {

2 width: 460px;

3 margin: 0 auto;

4 line-height: 1.5em;

5 padding-top: 72px;

6 }

Substitute your own magic number if you used a different font size.

We should get this:

Smashing eBook #9│Mastering CSS for Web Developers │ 275

It took some doing, but our canvas is ready at last!

Setting A Scale

Okay, our reset has made our h1 and p the same size. We need to get some
basic font styles in there. Add this block of code to the end of your CSS:

1 /*------------------------------------*\

2 TYPE

3 *------------------------------------*/

4 /*--- HEADINGS ---*/

5

6 h1, h2, h3, h4, h5, h6 {

7 margin-bottom: 24px;

8 font-weight: bold;

Smashing eBook #9│Mastering CSS for Web Developers │ 276

9 }

10

11 /*--- PARAGRAPHS ---*/

12

13 p {

14 margin-bottom: 24px;

15 }

Recognize your magic number? Let’s refresh the page and take a look:

Your magic number will now be the default margin-bottom value for all
of your elements. This, combined with the line height, will keep everything
on the baseline grid.

Smashing eBook #9│Mastering CSS for Web Developers │ 277

What we now need, though, are some different font sizes for the headings.
We need a typographic scale. I suggest this:

• h1 = 24 pixels

• h2 = 22 pixels

• h3 = 20 pixels

• h4 = 18 pixels

• h5 = 16 pixels

• h6 = 16 pixels

Many people work in pixels, but I much prefer working in ems. An em is
proportional to the current size of the font: 1 em in 72-point Georgia is 72
points, and 1 em in 8-point Garamond is 8 points.

So, if our base font size is 16 pixels (1 em), then 24 pixels would be 1.5 ems
(24 ÷ 16 = 1.5). If we continue, we end up with:

• h1 = 24 pixels → 24 ÷ 16 = 1.5 ems

• h2 = 22 pixels → 22 ÷ 16 = 1.375 ems

• h3 = 20 pixels → 20 ÷ 16 = 1.25 ems

• h4 = 18 pixels → 18 ÷ 16 = 1.125 ems

• h5 = 16 pixels → 16 ÷ 16 = 1 ems

• h6 = 16 pixels → 16 ÷ 16 = 1 ems

Smashing eBook #9│Mastering CSS for Web Developers │ 278

Next, we need to make sure the line height of each is 24 pixels. This means
that the h1 at a 24-point font size will have a line height of 1 em. Here’s the
math:

(magic number) ÷ (font size) = (line height)

Using our scale, the full CSS for the headings (including the math) is:

1 /*--- HEADINGS ---*/

2 h1, h2, h3, h4, h5, h6 {

3 margin-bottom: 24px;

4 font-weight: bold;

5 }

6

7 h1 {

8 font-size: 1.5em; /* 24px --> 24 ÷ 16 = 1.5 */

9 line-height: 1em; /* 24px --> 24 ÷ 24 = 1 */

10 }

11

12 h2 {

13 font-size: 1.375em; /* 22px --> 22 ÷ 16 = 1.375 */

14 line-height: 1.0909em; /* 24px --> 24 ÷ 22 =

1.090909(09) */

15 }

16

17 h3 {

18 font-size: 1.25em; /* 20px --> 20 ÷ 16 = 1.25 */

19 line-height: 1.2em; /* 24px --> 24 ÷ 20 = 1.2 */

20 }

21

22 h4 {

Smashing eBook #9│Mastering CSS for Web Developers │ 279

23 font-size: 1.125em; /* 18px --> 18 ÷ 16 = 1.125 */

24 line-height: 1.333em; /* 24px --> 24 ÷ 18 =

1.3333333(3) */

25 }

26

27 h5, h6 {

28 font-size: 1em; /* 16px --> 16 ÷ 16 = 1 */

29 line-height: 1.5em; /* 24px --> 24 ÷ 16 = 1.5 */

30 }

There’s our typographic scale.

Now, to test it, let’s try the following markup:

1 <body>

2

3 <h1>Your Name</h1>

4

5 <h2>Your Name</h2>

6

7 <h3>Your Name</h3>

8

9 <h4>Your Name</h4>

10

11 <h5>Your Name</h5>

12

13 <h6>Your Name</h6>

14

15 <p>Lorem ipsum dolor sit amet, consectetuer

adipiscing elit accumsan</p>

Smashing eBook #9│Mastering CSS for Web Developers │ 280

16

17 </body>

You might notice that not all of the lines of text sit perfectly on a gridline,
but that’s okay because they all honor the baseline! This is what I get:

You might think that something has gone wrong. But if you look, the
paragraph lies just fine once you get back to the normal font size. To be
honest, I’m not entirely sure about what causes this effect; the numbers we
used are all correct, and the vertical rhythm as a whole remains intact, but
individual lines of larger text appear to be offset from the baseline. I think
this could be due, in part, to the glyphs’ setting in their em box.

Smashing eBook #9│Mastering CSS for Web Developers │ 281

What Next?

Head back into your markup and remove everything except the h1. Now
we’re ready to do something useful. Let’s make a little “About you”-page.

The h1 is the name. And the markup can simply be:

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8" />

5 <title>Harry Roberts</title>

6 <link rel="stylesheet" type="text/css" href="css/

style.css" />

7 </head>

8

9 <body>

10

11 <h1>Harry Roberts</h1>

12

13 </body>

14 </html>

Now let’s add a little introductory paragraph about yourself. Mine reads:

1 <p>Hi there. My name is Harry Roberts.

2 I am a Web developer and type geek from the UK.

3 I love all things Web dev, and I am a huge advocate

4 of Web standards and proper ethics.</p>

Smashing eBook #9│Mastering CSS for Web Developers │ 282

Let’s experiment with altering the font size arbitrarily. Add this to your CSS:

1 *--- PARAGRAPHS ---*/

2 p {

3 margin-bottom: 24px;

4 }

5

6 body > p:first-of-type {

7 font-size: 1.125em;

8 /* 18px → 18 ÷ 16 = 1.125 */

9

10 line-height: 1.333em;

11 /* 24px → 24 ÷ 18 = 1.3333(3) */

12 }

Here we’re giving the first paragraph — a direct descendant of the body
element — a font size of 18 pixels and a line height of 24 pixels. See, there’s
your magic number again!

You might again see slight oddities with the paragraph sitting on the
baseline. To make sure the vertical rhythm is still intact, duplicate the
paragraph once more. You should get this:

Smashing eBook #9│Mastering CSS for Web Developers │ 283

Here you can see that the vertical rhythm is still intact and working
correctly.

Now for the best bits.

Tips on Technical Typography

There’s a good chance that you won’t want the grid to always be on, so
change this CSS:

1 /*------------------------------------*\

2 MAIN

3 *------------------------------------*/

4

5 html {

Smashing eBook #9│Mastering CSS for Web Developers │ 284

6 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

7 background: url(…/img/css/grid.png) center -6px

repeat-y #fff;

8 color: #333;

9 }

10

11 body {

12 width: 460px;

13 margin: 0 auto;

14 line-height: 1.5em;

15 padding-top: 72px;

16 }

… to this:

Smashing eBook #9│Mastering CSS for Web Developers │ 285

1 /*------------------------------------*\

2 MAIN

3 *------------------------------------*/

4

5 html {

6 font-family: Cambria, Georgia, "Times New Roman",

Times, serif;

7 color: #333;

8 }

9

10 body {

11 width: 460px;

12 margin: 0 auto;

13 line-height: 1.5em;

14 padding-top: 72px;

15 background: #fff;

16 }

17

18 body:hover {

19 background: url(…/img/css/grid.png) center -6px

repeat-y #fff;

20 }

This will show the grid when you hover over the body, and hide it when
you don’t.

Smashing eBook #9│Mastering CSS for Web Developers │ 286

Spacing And Setting Paragraphs

We’ve sorted out the magic number, and we know we should use it to
space the elements, but there’s more than one way to denote the
beginning of a new paragraph. One is the method we’re already using:
inserting a blank space (one magic number) between the paragraphs. The
second is indentation.

Typically, you would indent every paragraph except the first in a body of
text; the first paragraph has no indent and the second, third, fourth and so
on do have an indent (typically with a width of 1 em).

Enric Jardi writes in Twenty-Two Tips on Typography that, “… you must not
use both indentation and a line break at the same time; that is redundant.”

Here’s some quick CSS for indenting only the second and subsequent
paragraphs in a body of text:

1 p {

2 margin-bottom: 24px;

3 }

4

5 p+p {

6 text-indent: 1em;

7 margin-top: -24px;

8 }

For an explanation of how and why this works, refer to my other article,
“Mo’ Robust Paragraph Indenting.” You might also want to look at Jon Tan’s
silo.

Smashing eBook #9│Mastering CSS for Web Developers │ 287

http://csswizardry.com/2010/12/mo-robust-paragraph-indenting/
http://csswizardry.com/2010/12/mo-robust-paragraph-indenting/
http://jontangerine.com/silo/typography/p/
http://jontangerine.com/silo/typography/p/
http://jontangerine.com/silo/typography/p/
http://jontangerine.com/silo/typography/p/

Alignment

When setting type on the Web, use a range-left, ragged-right style. This
basically means left-justifying the type. If you use a sufficiently long
measure, then your rags (the uneven edges on the right side of a left-
aligned paragraph) will generally be clean; the raggedness of their
appearance can, however, be exacerbated at short measures, where a large
percentage of each line could end up as white space.

Justified typesetting can look great but lead to unsightly “rivers” in the text.
To avoid this, rewrite the copy to remove them, or use something like
Hyphenator.js, which is remarkably effective.

Proper Quotations Marks, Dashes And Ellipses

Quotation Marks

Many people are unaware that there are proper quotation marks and
“ambidextrous” quotation marks. The single- and double-quotation keys on
your keyboard are not, in fact, true quotation marks. They are catch-alls that
can function as both left and right single and double quotation marks; they
are, essentially, four glyphs in one key.

The reason behind this is simply space. A keyboard cannot feasibly fit
proper left and right single and double quotation marks.

So, what is a proper quotation mark? A curly (or “book”) quotation mark is
rounded and more angular than an ambidextrous (keyboard-style)
quotation mark. Left single and left double quotation marks look like this: ‘
and “ (‘ and “, respectively). Right single and right double

Smashing eBook #9│Mastering CSS for Web Developers │ 288

http://code.google.com/p/hyphenator/
http://code.google.com/p/hyphenator/

quotation marks look like this: ’ and ” (’ and ”,
respectively).

Many people incorrectly refer to ambidextrous quotation marks as “primes,”
but a prime is a different glyph. Single and double primes look like this: ′
and ″ (′ and ″, respectively). They are used to denote feet
and inches (e.g. 5′10″).

I said that one key incorporates four glyphs. In fact, two keys incorporate six
glyphs.

Which Quotation Marks Should You Use?

The type of quotation marks to use (double or single) varies from country
to country and style guide to style guide. Double quotation marks are
typically used to quote a written or spoken source, and single quotation
marks are used for quotes within quotes.

However, I much prefer Jost Hochuli’s advice in Detail in Typography: “… the
appearance is improved by using the more obtrusive double quotation
marks for the less frequent quotations within quotations.” Which basically
means, for a nicer appearance, use single quotation marks, and then double
quotation marks for quotes within quotes. (If I had a penny for every time I
said quotes in this section.)

For example:

‘And then he said to me, “Do you like typography?” And naturally I said
that I did.’

Smashing eBook #9│Mastering CSS for Web Developers │ 289

http://www.dealpond.com/books/compare/0907259340
http://www.dealpond.com/books/compare/0907259340

Use a right single quotation mark where you’d normally use an apostrophe
in text: “I’m a massive typography nerd!” (I’m a massive
typography nerd!)

In short, stop using those horrible keyboard quotation marks, and start
using lovely curly marks in your work.

Non-English Quotation Marks

The quotation marks we’ve covered are used in English, but quotes look
different in other languages.

French and Spanish use guillemets, «like this» («like
this»). In Danish, they are used »like this« (»like
this«). In German, using a combination of bottom and regular
double quotation marks is common, „like this“ („like
this“).

For a great overview of other non-English quotation marks, see the
Wikipedia entry on “Non-English Usage of Quotation Marks.”

Dashes

We know that keyboards can’t accommodate all quotation marks; and they
can’t accommodate all types of dashes either. The hyphen key (-) is another
catch-all. There are three main types of dash: the em dash, en dash and
hyphen.

The em dash (—) denotes a break in thought—like this. It’s called
the “em” dash because, traditionally, it is one em wide. Em dashes are
usually set without spaces on either side (as above).

Smashing eBook #9│Mastering CSS for Web Developers │ 290

http://en.wikipedia.org/wiki/Non-English_usage_of_quotation_marks
http://en.wikipedia.org/wiki/Non-English_usage_of_quotation_marks

The en dash (–) is traditionally half the width of an em dash. It is
used to denote ranges, as in “please read pages 17–25” (17–25). It
can also denote relational phrases, as in “father–son” or “New York–
London.”

The hyphen simply ties together compound words, as in “front-end
developer.”

The em dash, en dash and hyphen are different, and each has unique uses.

Ellipsis

An ellipsis is used to denote a thought trailing off. It is also used as a
placeholder for omitted text in lengthy quotations.

The ellipsis has become the bane of my life. I often come across people
who use a series of dots (periods) in place of a proper ellipsis, like so……

An ellipsis is not three dots. It is one glyph that looks like three dots. Its
HTML entity is … (as in horizontal ellipsis).

So there were a few glyphs for you to use with quotes, primes, dashes and
ellipses. Let’s recap:

Smashing eBook #9│Mastering CSS for Web Developers │ 291

In addition to these common glyphs, there are numerous others: from the
division symbol (÷ or ÷) to the section symbol (§ or §). If
you’re interested in special characters and glyphs, then Wikipedia’s article
on “Punctuation” is a good place to start (just keep clicking from there).

Hanging Punctuation

Punctuation should be hung; quotation marks and bullet points should be
clear of the edges of surrounding text. If that doesn’t make sense, don’t
worry! Let’s add a new section to your page. Remove that duplicated
paragraph and replace it with a list of facts about yourself. Mine looks like
this:

Smashing eBook #9│Mastering CSS for Web Developers │ 292

http://en.wikipedia.org/wiki/Punctuation
http://en.wikipedia.org/wiki/Punctuation

1

2

3 Web development

4

5 HTML(5)

6 CSS(3)

7 Accessibility

8 Progressive enhancement

9

10

11

12 Web design

13

14 Typography

15 Grids

16

17

18

Add this to the end of your CSS sheet:

1 /*--- LISTS ---*/

2 ul, ol {

3 margin-bottom: 24px;

4 /* Remember, if your magic number is

5 different to this, use your own. */

6 }

7

8 ul {

9 list-style: square outside;

10 }

Smashing eBook #9│Mastering CSS for Web Developers │ 293

11

12 ul ul,

13 ol ol {

14 margin: 0 0 0 60px;

15 }

My page now looks like this:

We’ve given the lists our magic number as a margin, set the bullets to be
hung outside of the text (i.e. the bullets will sit in the white of the gutter,
not the pink of the column) and indented lists within lists by one grid
column.

Experiment by nesting lists more and more deeply:

Smashing eBook #9│Mastering CSS for Web Developers │ 294

Hang quotation marks as well as bullets. Let’s add some more text and a
quote to our page:

1 <p>Vestibulum adipiscing lectus ut risus adipiscing

2 mattis sed ac lectus. Cras pharetra lorem eget diam

3 consectetur sit amet congue nunc consequat. Curabitur

4 consectetur ullamcorper varius. Nulla sit amet sem ac

5 velit auctor aliquet. Quisque nec arcu non nulla

adipiscing

6 rhoncus ut nec lorem. Vestibulum non ipsum arcu.

Quisque

7 dapibus orci vitae massa fringilla sit amet viverra

nulla.</p>

8

9 <blockquote>

Smashing eBook #9│Mastering CSS for Web Developers │ 295

10

11 <p>“Lorem ipsum dolor sit amet,

12 consectetuer adipiscing elit. In accumsan diam

13 vitae velit. Aliquam vehicula, turpis sed egestas

14 porttitor, est ligula egestas leo, at interdum

15 leo ante ut risus.”

16 —Joe Bloggs</p>

17

18 </blockquote>

The markup here is pretty straightforward: a blockquote surrounding a
paragraph. You might also notice the use of a b element to mark up the
name. The HTML spec states that “The b element [is used for] spans of text
whose typical typographic presentation is boldened.” This is a loose
definition, so its use for bolding the name of a person is acceptable.

Now, add this to the end of your CSS sheet:

1 /*--- QUOTES ---*/

2 blockquote {

3 margin: 0 60px 0 45px;

4 border-left: 5px solid #ccc;

5 padding-left: 10px;

6 text-indent: -0.4em;

7 }

8

9 blockquote b {

10 display: block;

11 text-indent: 0;

12 }

Smashing eBook #9│Mastering CSS for Web Developers │ 296

http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-b-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-b-element

Here we indent the quote by 60 pixels from the left and right (i.e. 45-pixel
margin + 5-pixel border + 10-pixel padding = 60 pixels), taking it in by one
column of the grid. We then use a negative text-indent to make the
opening quote hang outside of the body of text. The number I used works
perfectly for Cambria, but you can experiment with the font of your choice.
(Don’t forget to remove the text-indent on the b.) Now we know how to
hang bullets and quotation marks.

Smashing eBook #9│Mastering CSS for Web Developers │ 297

Maybe you’re wondering why I’m using double quotation marks here after
recommending single quotation marks. The reason is purely aesthetic.
Hanging double quotation marks in blockquote tags simply looks nicer.

Guillemets

Now that we’ve done that, let’s add a “Read more” link to get us from this
little page to, say, our portfolio’s full “About” page. We want to imply
direction or movement with this link because it’s going to take us
elsewhere. We could, as many people do, use a guillemet (», »), but
— as we covered earlier — French, German and other languages use this
glyph as a quotation mark. Therefore, it shouldn’t be used stylistically. Add
this markup to your page:

1 <p><a href="http://csswizardry.com/about/ "

2 class="read-more">Read more</p>

Add this to the end of your CSS file:

1 /*--- LINKS ---*/

2 a {

3 color: #09f;

4 text-decoration: none;

5 }

6

7 a:hover {

8 text-decoration: underline;

9 }

10

11 a:active,

12 a:focus {

Smashing eBook #9│Mastering CSS for Web Developers │ 298

http://csswizardry.com/about/
http://csswizardry.com/about/
http://en.wikipedia.org/wiki/Guillemets
http://en.wikipedia.org/wiki/Guillemets
http://en.wikipedia.org/wiki/Guillemets#Uses
http://en.wikipedia.org/wiki/Guillemets#Uses

13 position: relative;

14 top: 1px;

15 }

16

17 .read-more:after {

18 content: "\00A0\000BB"; /* Insert a space then right

angled-quote */

19 }

This simply places an encoded space and right-angled quotation mark after
the “Read more” link by using CSS, which means you don’t have to add that
quotation mark to your markup.

Smashing eBook #9│Mastering CSS for Web Developers │ 299

http://www.evotech.net/articles/testjsentities.html
http://www.evotech.net/articles/testjsentities.html

You can use content:""; to keep the markup clean. This means that
other things, such as stylistic right-angled quotation marks and other
decorative items of type, can be added with CSS to keep the markup free of
non-semantic elements.

Let’s say you wanted to add tildes to either side of a heading:

1 h1 {

2 text-align: center;

3 }

4 h1:before {

Smashing eBook #9│Mastering CSS for Web Developers │ 300

http://csswizardry.com/2010/09/keeping-code-clean-with-content/
http://csswizardry.com/2010/09/keeping-code-clean-with-content/

5 content: "\007E\00A0"; /* Insert an tilde, then a

space. */

6 }

7 h1:after {

8 content: "\00A0\007E"; /* Insert a space, then an

tilde. */

9 }

Some Images

Elements such as tables and images are notoriously difficult to fit into
baseline grids unless you save every one as a multiple of your magic
number. However, we can float images left and right within the y axis of the
grid and allow text to fit the baseline around it. Grab an image of yourself
(or your cat or whatever) and crop it to a width that fits our 16-column
960.gs. I’m going to use a 160-pixel-wide image (i.e. three grid columns).

Place it in the markup just after your h1, thus:

1 …

2 <body>

3

4 <h1>Harry Roberts</h1>

5

6

If you hit “Refresh” now, it will likely break the baseline. Never fear — add
this CSS:

Smashing eBook #9│Mastering CSS for Web Developers │ 301

http://960.gs/demo.html
http://960.gs/demo.html
http://960.gs/demo.html
http://960.gs/demo.html

1 /*------------------------------------*\

2 IMAGES

3 *------------------------------------*/

4

5 #me {

6 float: right;

7 margin: 0 0 0 20px;

8 display: block;

9 width: 148px;

10 height: auto;

11 padding: 5px;

12 border: 1px solid #ccc;

13

14 -moz-border-radius: 2px;

15 -webkit-border-radius: 2px;

16 -o-border-radius: 2px;

17 border-radius: 2px;

18 }

Notice how the image doesn’t appear to sit on the baseline, but the rest of
the text does? Beautiful, isn’t it?

So, there you have it. Using nothing more than plain ol’ browser text, one
image, a lot of typography knowledge and some careful, caring attention,
you’ve made a full page of typographic splendor — a page that uses a grid,
a baseline, proper punctuation and glyphs, an ideal measure and leading
and a typographic scale.

Now get in there! Add elements, subtract them, add colors, add your own
creative type. Just remember the few simple rules and your magic number,
and you’re away!

Smashing eBook #9│Mastering CSS for Web Developers │ 302

The final piece, with the grid.

Smashing eBook #9│Mastering CSS for Web Developers │ 303

The final piece, without the grid.

Final Words

In this admittedly long piece, we have discussed only technical typography.
Everything in this article can be applied to almost any project. None of it
was speculation; these are tried and tested methods and proven tips for
beautiful Web type.

Smashing eBook #9│Mastering CSS for Web Developers │ 304

If you’d like to see more creative applications of Web type, then check out
the work of the following creatives (each of whom has had much influence
on my career so far):

• Oliver Reichenstein of Information Architects
A huge inspiration to me and a very knowledgeable guy who has a
passion and talent for readable, sensible and beautiful type on the
Web.

• Jon Tan
Jon’s website is gorgeous. He is a member of the International Society
of Typographic Designers (ISTD), and his writings and “silo” (on his
personal website) are a hive of typographical information.

• Jos Buivenga
Not strictly a Web-type guy, but Jos is the creator of some of the most
beautiful (and free!) fonts in existence. His work got me hooked on
typography.

• Khoi Vinh
His timelessly beautiful website spurred my love for grids. He also
recently wrote a book on that very subject.

Keep in mind that you don’t have to be the world’s best designer to create
beautiful type. You just have to care.

Smashing eBook #9│Mastering CSS for Web Developers │ 305

http://informationarchitects.jp/
http://informationarchitects.jp/
http://jontangerine.com/
http://jontangerine.com/
http://exljbris.com/
http://exljbris.com/
http://www.subtraction.com/
http://www.subtraction.com/
http://www.dealpond.com/books/compare/0321703537
http://www.dealpond.com/books/compare/0321703537

The Future of CSS Typography
Inayaili de Leon

There has been an increasing and sincere interest in typography on the web
over the last few years. Most websites rely on text to convey their
messages, so it’s not a surprise that text is treated with utmost care. In this
article, we’ll look at some useful techniques and clever effects that use the
power of style sheets and some features of the upcoming CSS Text Level 3
specification, which should give Web designers finer control over text.

Keep in mind that these new properties and techniques are either new or
still in the works, and some of the most popular browsers do not yet
support them. But we feel it’s important that you, as an informed and
curious Web designer, know what’s around the corner and are able to
experiment in your projects.

A Glance At The Basics

One of the most common CSS-related mistakes made by budding Web
designers is creating inflexible style sheets that have too many classes and
IDs and that are difficult to maintain.

Let’s say you want to change the color of the headings in your posts,
keeping the other headings on your website in the default color. Rather
than add the class big-red to each heading, the sensible approach would
be to take advantage of the DIV class that wraps your posts (probably
post) and create a selector that targets the heading you wish to modify,
like so:

Smashing eBook #9│Mastering CSS for Web Developers │ 306

1 .post h2 {

2 font-weight: bold;

3 color: red;

4 }

This is just a quick reminder that there is no need to add classes to
everything you want to style with CSS, especially text. Think simple.

The Font Property

Instead of specifying each property separately, you can do it all in one go
using the font shorthand property. The order of the properties should be as
follows: font-style, font-variant, font-weight, font-size,
line-height, font-family.

When using the font shorthand, any values not specified will be replaced by
their parent value. For example, if you define only 12px Helvetica,
Arial, sans-serif, then the values for font-style, font-variant
and font-weight will be set as normal.

The font property can also be used to specify system fonts: caption,
icon, menu, message-box, small-caption, status-bar. These values
will be based on the system in use, and so will vary according to the user’s
preferences.

Other Font Properties

A few font-related properties and values are not as commonly used. For
example, instead of using text-transform to turn your text into all caps,
you could use font-variant: small-caps for a more elegant effect.

Smashing eBook #9│Mastering CSS for Web Developers │ 307

You could also be very specific about the weight of your fonts, instead of
using the common regular and bold properties. CSS allows you to
specify font weight with values from 100 to 900 (i.e. 100, 200, 300, etc.). If
you decide to use these, know that the 400 value represents the normal
weight, while 700 represents bold. If a font isn’t given a weight, it will
default to its parent weight.

Another useful property, sadly supported only in Firefox for now, is font-
size-adjust, which allows you to specify an aspect ratio for when a fall-
back font is called. This way, if the substitute font is smaller than the
preferred one, the text’s x-height will be preserved. A good explanation of
how font-size-adjust works can be found on the W3C website.

Dealing With White Space, Line Breaks And Text
Wrapping

Several CSS properties deal with these issues, but the specs are still in the
works (at the “Working Draft” stage).

White Space

The white-space property lets you specify a combination of properties
for which it serves as a shorthand: white-space-collapsing and
text-wrap. Here’s a breakdown of what each property stands for:

• normal
white-space-collapsing: collapse/text-wrap: normal

• pre
white-space-collapsing: preserve/text-wrap: none

Smashing eBook #9│Mastering CSS for Web Developers │ 308

http://www.w3.org/TR/css3-fonts/#font-weight-the-font-weight-property
http://www.w3.org/TR/css3-fonts/#font-weight-the-font-weight-property
http://www.w3.org/TR/css3-fonts/#font-size-adjust
http://www.w3.org/TR/css3-fonts/#font-size-adjust
http://dev.w3.org/csswg/css3-text/#white-space-collapsing
http://dev.w3.org/csswg/css3-text/#white-space-collapsing
http://dev.w3.org/csswg/css3-text/#text-wrap
http://dev.w3.org/csswg/css3-text/#text-wrap

• nowrap
white-space-collapsing: collapse/text-wrap: none

• pre-wrap
white-space-collapsing: preserve/text-wrap: normal

• pre-line
white-space-collapsing: preserve-breaks/text-wrap: normal

This property can be useful if you want to, for example, display snippets of
code on your website and preserve line breaks and spaces. Setting the
container to white-space: pre will preserve the formatting.

WordPress uses white-space: nowrap on its dashboard so that the numbers
indicating posts and comments don’t wrap if the table cell is too small.

Word Wrap

One property that is already well used is word-wrap. It supports one of
two values: normal and break-word. If you set word-wrap to break-
word and a word is so long that it would overflow the container, it is
broken at a random point so that it wraps within the container.

Smashing eBook #9│Mastering CSS for Web Developers │ 309

http://wordpress.org/
http://wordpress.org/

The International Gorilla Conservation Programme website uses word-wrap for
its commenters’ names.

In theory, word-wrap: break-word should only be allowed when
text-wrap is set to either normal or suppress (which suppresses line
breaking). But in practice and for now, it works even when text-wrap is
set to something else.

Bear in mind that according to the specification, the break-strict value
for the word-break property is at risk of being dropped.

Word And Letter Spacing

Two other properties that are often used are word-spacing and letter-
spacing. You can use them to control—you guessed it—the spacing
between words and letters, respectively. Both properties support three
different values that represent optimal, minimum and maximum spacing.

Smashing eBook #9│Mastering CSS for Web Developers │ 310

http://www.igcp.org/
http://www.igcp.org/

Show & Tell uses letter-spacing on its navigation links.

For word-spacing, setting only one value corresponds to the optimal
spacing (and the other two are set to normal). When setting two values,
the first one corresponds to the optimal and minimum spacing, and the
second to the maximum. Finally, if you set all three values, they correspond
to all three mentioned above. With no justification, optimal spacing is used.

It works slightly different for letter-spacing. One value only
corresponds to all three values. The others work as they do for word-
spacing.

The specifications contain a few requests for more information and
examples on how white-space processing will work and how it can be used
and be useful for languages such as Japanese, Chinese, Thai, Korean, etc.
So, if you’d like help out, why not give it a read (it’s not that long), and see
how you can contribute?

Smashing eBook #9│Mastering CSS for Web Developers │ 311

http://www.showandtellsale.com/
http://www.showandtellsale.com/
http://dev.w3.org/csswg/css3-text/#white-space-processing
http://dev.w3.org/csswg/css3-text/#white-space-processing

Indentation And Hanging Punctuation

Text indentation and hanging punctuation are two typographical features
that are often forgotten on the Web. This is probably due to one of three
factors:

1. Setting them is not as straightforward as it could be

2. There has been a conscious decision not to apply them

3. Designers simply aren’t aware of them or don’t know how to properly
use them

The Sushi & Robots website has hanging punctuation on bulleted lists.

Smashing eBook #9│Mastering CSS for Web Developers │ 312

http://sushiandrobots.com/journal/
http://sushiandrobots.com/journal/

Mark Boulton has a good brief explanation of hanging punctuation in his
“Five Simple Steps to Better Typography” series, and Richard Rutter
mentions indentation on his website, The Elements of Typographic Style
Applied to the Web. These are two very good reads for any Web designer.

So, the theory is that you should apply a small indentation to every text
paragraph after the first one. You can easily do this with an adjacent sibling
combinator:

1 p + p {

2 text-indent: 1em;

3 }

This selector targets every paragraph (i.e. p) that follows another paragraph;
so the first paragraph is not targeted.

Another typographic rule of thumb is that bulleted lists and quotes should
be “hung.” This is so that the flow of the text is not disrupted by these visual
distractions.

The CSS Text Level 3 specification has an (incomplete) reference to an
upcoming hanging-punctuation property.

For now, though, you can use the text-indent property with negative
margins to achieve the desired effect:

1 blockquote {

2 text-indent: -0.2em;

3 }

For bulleted lists, just make sure that the position of the bullet is set to
outside and that the container div is not set to overflow: hidden;
otherwise, the bullets will not be visible.

Smashing eBook #9│Mastering CSS for Web Developers │ 313

http://www.markboulton.co.uk/journal/comments/five-simple-steps-to-better-typography
http://www.markboulton.co.uk/journal/comments/five-simple-steps-to-better-typography
http://webtypography.net/
http://webtypography.net/
http://webtypography.net/
http://webtypography.net/
http://www.w3.org/TR/css3-text/#hanging-punctuation
http://www.w3.org/TR/css3-text/#hanging-punctuation

Web Fonts And Font Decoration

font-face

Much talk has been made on the Web about font-face and whether it’s a
good thing—especially after the appearance of Typekit (and the still-in-
private-beta Fontdeck). The debate is mainly about how much visual clutter
this could bring to Web designs. Some people (the argument goes) aren’t
sufficiently font-savvy to be able to pull off a design in which they are free
to use basically any font they wish. Wouldn’t our sensitive designer eyes be
safer if only tested, approved Web-safe fonts were used?

On whatever side of the argument you fall, the truth is that the examples of
websites that use font-face beautifully are numerous.

Smashing eBook #9│Mastering CSS for Web Developers │ 314

http://typekit.com/
http://typekit.com/
http://fontdeck.com/
http://fontdeck.com/

Jonathan Snook’s recently redesigned website uses the font-face property.

The font-face property is fairly straightforward to grasp and use. Upload
the font you want to use to your website (make sure the licence permits it),
give it a name and set the location of the file.

In its basic form, this is what the font-face property looks like:

1 @font-face {

2 font-family: Museo Sans;

3 src: local(“Museo Sans”), url(MuseoSans.ttf)

format(“opentype”);

4 }

Smashing eBook #9│Mastering CSS for Web Developers │ 315

http://snook.ca/
http://snook.ca/

The two required font-face descriptors are font-family and src. In
the first, you indicate how the font will be referenced throughout your CSS
file. So, if you want to use the font for h2 headings, you could have:

1 h2 {

2 font-family: Museo Sans, sans-serif;

3 }

With the second property (src), we are doing two things:

1. If the font is already installed on the user’s system, then the CSS uses
the local copy instead of downloading the specified font. We could
have skipped this step, but using the local copy saves on bandwidth.

2. If no local copy is available, then the CSS downloads the file linked to
in the URI. We also indicate the format of the font, but we could have
skipped that step, too.

For this property to work in IE, we would also need the EOT version of the
font. Some font shops offer multiple font formats, including EOT, but in
many cases we will need to convert the TrueType font using Microsoft’s
own WEFT, or another tool such as ttf2eot.

Some good resources for finding great fonts that can be used with font-
face are Font Squirrel and Fontspring.

text-shadow

The text-shadow property allows you to add a shadow to text easily and
purely via CSS. The shadow is applied to both the text and text decoration if
it is present. Also, if the text has text-outline applied to it, then the
shadow is created from the outline rather than from the text.

Smashing eBook #9│Mastering CSS for Web Developers │ 316

http://www.microsoft.com/typography/WEFT.mspx
http://www.microsoft.com/typography/WEFT.mspx
http://code.google.com/p/ttf2eot/
http://code.google.com/p/ttf2eot/
http://www.fontsquirrel.com/
http://www.fontsquirrel.com/
http://www.fontspring.com/
http://www.fontspring.com/

Neutron Creations website uses text-shadow.

With this property you can set the horizontal and vertical position of the
shadow (relative to the text), the color of the shadow and the blur radius.
Here is a complete text-shadow property:

1 p {

2 text-shadow: #000000 1px 1px 1px;

3 }

Both the color and blur radius (the last value) are optional. You could also
use an RGBa color for the shadow, making it transparent:

1 p {

2 text-shadow: rgba(0, 0, 0, 0.5) 1px 1px 1px;

3 }

Here we define the R, G and B values of the color, plus an additional alpha
transparency value (hence the a, whose value here is 0.5).

Smashing eBook #9│Mastering CSS for Web Developers │ 317

http://neutroncreations.com/
http://neutroncreations.com/

The specification still has some open questions about text-shadow, like
how should the browser behave when the shadow of an element overlaps
the text of an adjoining element? Also, be aware that multiple text shadows
and the text-outline property may be dropped from the specification.

New Text-Decoration Properties

One problem with the text-underline property is that it gives us little
control. The latest draft of the specification, however, suggests new and
improved properties that may give us fine-grained control. You can’t use
them yet, but we’ll give you a condensed sneak peek at what may come.

• text-decoration-line
Takes the same values as text-decoration: none, underline,
overline and line-through.

• text-decoration-color
Specifies the color of the line of the previous property.

• text-decoration-style
Takes the values of solid, double, dotted, dashed and wave

• text-decoration
The shorthand for the three preceding properties. If you specify a value
of only one of none, underline, overline or line-through, then
the property will be backwards-compatible with CSS Level 1 and 2. But
if you specify all three values, as in text-decoration: red
dashed underline, then it is ignored in browsers that don’t support
them.

Smashing eBook #9│Mastering CSS for Web Developers │ 318

http://dev.w3.org/csswg/css3-text/#decoration
http://dev.w3.org/csswg/css3-text/#decoration

• text-decoration-skip
Specifies whether the text decoration should skip certain types of
elements. The proposed values are none, images, spaces, ink and
all.

• text-underline-position
With this property, you can control, for example, whether the underline
should cross the text’s descenders or not: auto, before-edge,
alphabetic and after-edge.

Controlling Overflow

The text-overflow property lets you control what is shown when text
overflows its container. For example, if you want all of the items in a list of
news to have the same height, regardless of the amount of text, you can
use CSS to add ellipses (…) to the overflow to indicate more text. This
technique is commonly seen in iPhone apps and websites.

Smashing eBook #9│Mastering CSS for Web Developers │ 319

The New York Times iPhone app uses an ellipsis for overflowing text.

This property works in the latest versions of Safari and Opera and in IE6
(where the overflowing element should have a set width, such as 100%) and
IE7. To be able to apply the property to an element, the element has to
have overflow set to something other than visible and white-

Smashing eBook #9│Mastering CSS for Web Developers │ 320

http://www.nytimes.com/ref/membercenter/iphonefaq.html
http://www.nytimes.com/ref/membercenter/iphonefaq.html

space: nowrap. To make it work in Opera, you need to add the vendor-
specific property:

1 li {

2 white-space: nowrap;

3 width: 100%;

4 overflow: hidden;

5 -o-text-overflow: ellipsis;

6 text-overflow: ellipsis;

7 }

In the Editor’s draft of the specification, you can see that other properties
related to text-overflow are being considered, such as text-
overflow-mode and text-overflow-ellipsis, for which text-
overflow would be the shorthand.

Alignment And Hyphenation

Controlling hyphenation online is tricky. Many factors need to be
considered when setting automatic hyphenation, such as the fact that
different rules apply to different languages. Take Portuguese, in which you
can hyphenate a word only at the end of a syllable; for double consonants,
the hyphen must be located right in the middle.

The specification is still being developed, but the proposed properties are:

• hyphenate-dictionary

• hyphenate-before and hyphenate-after

• hyphenate-lines

• hyphenate-character

Smashing eBook #9│Mastering CSS for Web Developers │ 321

http://dev.w3.org/csswg/css3-text/#text-overflow
http://dev.w3.org/csswg/css3-text/#text-overflow

This is a good example of how the input of interested Web designers is
vital. Thinking about and testing these properties before they are finalized
has nothing to do with being “edgy” or with showing off. By proposing
changes to the specification and illustrating our comments with examples,
we are contributing to a better and stronger spec.

Another CSS3 property that hasn’t been implemented in most browsers
(only IE supports it, and only partially) is text-align-last. If your text is
set to justify, you can define how to align the last line of a paragraph or
the line right before a forced break. This property takes the following
values: start, end, left, right, center and justify.

Unicode Range And Language

Unicode Range

The unicode-range property lets you define the range of Unicode
characters supported by a given font, rather than providing the complete
range. This can be useful to restrict support for a wide variety of languages
or mathematical symbols, and thus reduce bandwidth usage.

Imagine that you want to include some Japanese characters on your page.
Using the font-face rule, you can have multiple declarations for the
same font-family, each providing a different font file to download and a
different Unicode range (or even overlapping ranges). The browser should
only download the ranges needed to render that specific page.

To see examples of how unicode-range could work, head over to the
spec’s draft page.

Smashing eBook #9│Mastering CSS for Web Developers │ 322

http://www.w3.org/TR/css3-fonts/#character-range-the-unicode-range-descri
http://www.w3.org/TR/css3-fonts/#character-range-the-unicode-range-descri

Language

Use the :lang pseudo-class to create language-sensitive typography. So,
you could have one background color for text set in French (fr) and
another for text set in German (de):

1 div:lang(fr) {

2 background-color: blue;

3 }

4

5 div:lang(de) {

6 background-color: yellow;

7 }

You might be wondering why we couldn’t simply use an attribute selector
and have something like the following:

1 div[lang|=fr] {

2 background-color: blue;

3 }

Here, we are targeting all div elements whose lang attribute is or starts
with fr, followed by an -. But if we had elements inside that div, they
wouldn’t be targeted by this selector because their lang attribute isn’t
specified. By using the :lang pseudo-class, the lang attribute is inherited
to all children of the elements (the whole body element could even be
holding the attribute).

The good news is that all latest versions of the major browsers support this
pseudo-class.

Smashing eBook #9│Mastering CSS for Web Developers │ 323

Conclusion

In surveying the examples in this article, you may be wondering why to
bother with most of them.

True, the specification is far from being approved, and it could change over
time, but now is the time for experimentation and to contribute to the final
spec.

Try out these new properties, and think of how they could be improved or
how you could implement them to make your life easier in future. Having
examples of implementations is important to the process of adding a
property to the spec and, moreover, of implementing it in browsers.

You can start with the simple step of subscribing to the CSS Working Group
blog to keep up to date on the latest developments.

So, do your bit to improve the lot of future generations of Web designers…
and your own!

Smashing eBook #9│Mastering CSS for Web Developers │ 324

http://www.w3.org/blog/CSS
http://www.w3.org/blog/CSS
http://www.w3.org/blog/CSS
http://www.w3.org/blog/CSS

Using CSS3: Older Browsers and Common
Considerations
Dave Sparks

With the arrival of IE9, Microsoft has signaled its intent to work more with
standards-based technologies. With IE still the single most popular browser
and in many ways the browser for the uninitiated, this is hopefully the long
awaited start of us Web craftsmen embracing the idea of using CSS3 as
freely as we do CSS 2.1. However, with IE9 not being supported on versions
of Windows before Vista and a lot of businesses still running XP and
reluctant (or unable) to upgrade, it might take a while until a vast majority
of our users will see the new technologies put to practice.

While plenty of people out there are using CSS3, many aren’t so keen or
don’t know where to start. This article will first look at the ideas behind
CSS3, and then consider some good working practices for older browsers
and some new common issues.

A Helpful Analogy

The best analogy to explain CSS3 that I’ve heard relates to the world of film.
Filmmakers can’t guarantee what platform their viewers will see their films
on. Some will watch them at the cinema, some will watch them at home,
and some will watch them on portable devices. Even among these few
viewing options, there is still a massive potential for differences: IMAX, DVD,
Blu-ray, surround sound — somebody may even opt for VHS!

Smashing eBook #9│Mastering CSS for Web Developers │ 325

So, does that mean you shouldn’t take advantage of all the great stuff that
Blu-ray allows with sound and video just because someone somewhere will
not watch the film on a Blu-ray player? Of course not. You make the
experience as good as you can make it, and then people will get an
experience that is suitable to what they’re viewing the movie on.

A lot about CSS3 can be compared to 3-D technology. They are both
leading-edge technologies that add a lot to the experience. But making a
film without using 3-D technology is still perfectly acceptable, and
sometimes even necessary. Likewise, you don’t need to splash CSS3
gradients everywhere and use every font face you can find. But if some
really do improve the website, then why not?

However, simply equating CSS3 to 3-D misses the point. In many cases,
CSS3 simply allows us to do the things that we’ve been doing for years, but
without all the hassle.

To Gracefully Degrade or Progressively Enhance?

In film, you create the best film you can make and then tailor the product to
the viewing platform. Sound familiar? If you have dabbled in or even taken
a peek at CSS3, it should.

There are two schools of thought with CSS3 usage, and it would be safe to
say that the fundamental principle of both is to maintain a website’s
usability for those whose browsers do not support CSS3 capabilities, while
providing CSS3 enhancements for those whose browsers do. In other
words, make sure the film still looks good even without the 3-D specs. In
many ways, the schools of thought are similar, and regardless of which you
adopt, you will face many of the same concerns and issues, only from
different angles.

Smashing eBook #9│Mastering CSS for Web Developers │ 326

Graceful Degradation

With graceful degradation, you code for the best browsers and ensure that
as the various layers of CSS3 are peeled away on older browsers, those
users still get a usable (even if not necessarily as pleasing an) experience.

The approach is similar (although not identical) to using an IE6-only style
sheet, whereby you serve a certain set of styles to most users, while serving
alternate styles to users of IE6 and lower. Normally, the IE6 version of a
website removes or replaces styling properties that don’t work in IE6, along
with fixes for any layout quirks. Graceful degradation differs in that it makes
use of the natural fallbacks in the browser itself, and fixes are determined by
browser capabilities rather than specific browser versions. Also, graceful
degradation does not normally require an entirely different set of styles.
The result, though, is that the majority of users get the normal view, and
then tweaks are applied for people who have yet to discover a better
browser.

Aggressive graceful degradation is at the heart of Andy Clarke’s recent
book, Hardboiled Web Design, and the accompanying website makes great
use of graceful degradation. There are plenty of other examples, including
Do Websites Need to Look Exactly the Same in Every Browser.com, which
was built to showcase the technique, and Virgin Atlantic’s vtravelled blog,
designed by John O’Nolan, which shows some great subtle fallbacks that
most users wouldn’t even notice. And if you’re a WordPress user, why not
compare your admin dashboard in IE to it in another browser?

Progressive Enhancement

Progressive enhancement follows the process in reverse: that is, building for
lower-support browsers and then using CSS3 to enhance the experience of

Smashing eBook #9│Mastering CSS for Web Developers │ 327

http://hardboiledwebdesign.com/
http://hardboiledwebdesign.com/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/
http://blog.vtravelled.com/
http://blog.vtravelled.com/

those with more capable browsers. This used to be done, and still is by
some, with separate enhancement style sheets.

As a starting point, most people will code for a sensible standards-based
browser, then add some code to support browsers such as IE7 and 8, and
then possibly throw in some fixes for IE6 for good measure, and then step
back and think, “How can I improve this with CSS3?” From there, they
would add properties such as rounded corners, gradients, @font-face
text replacement and so on.

As browser makers add support, progressive enhancement appears to be
taking a back seat to graceful degradation. But progressive enhancement is
a very good approach for getting started with CSS3 properties and learning
how they work.

Examples of the technique include the personal websites of Sam Brown and
Elliot Jay Stocks, which both feature enrichment-type style sheets, Elliot has
spoken on the matter, and the slides from his 2009 Web Directions South
talk, “Stop Worrying and Get on With It (Progressive Enhancement and
Intentional Degradation),” make for good reading.

Smashing eBook #9│Mastering CSS for Web Developers │ 328

http://sam.brown.tc/
http://sam.brown.tc/
http://elliotjaystocks.com/
http://elliotjaystocks.com/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/

Elliot Jay Stock’s presentation ‘Stop Worrying and Get on With It

(Progressive Enhancement and Intentional Degradation)’

Comparing the two, graceful degradation can be considered a top-down
approach, starting with browsers most capable of utilizing CSS3 and
working down to older browsers that lack support.

Progressive enhancement works the other way, bottom-up, using a
standards-based browser of choice as the baseline, along maybe with IE7,
and then adding CSS3 for browsers that support it. Its benefit is that it is
easy to work with when you’re just getting used to CSS3, and it’s also a
sensible approach when adding CSS3 to older websites.
Whichever approach you choose, there are a number of things to consider,

Smashing eBook #9│Mastering CSS for Web Developers │ 329

http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/

what with all the CSS3 properties that are coming out. Later on, we will look
at considerations for certain key properties.

How To Do It?

Whatever your approach, you will no doubt find yourself thinking through
the common fallback process at some point: what would this element look
like with a certain property, and what would it look like without it? Would it
look fine or broken? If it would look broken, there’s a good chance you will
need to do something about it.

As a typical path, you would first implement a feature with CSS3, then with
CSS 2.1, then (maybe) with JavaScript, and then with whatever hack you
used to use for legacy browsers. You could argue that progressive
enhancement would slightly modify this path, using CSS 2.1 first, then
CSS3.

At each stage, you should determine whether degrading or enhancing a
feature would become unnecessarily complex and whether simply
providing an alternative would be more sensible.

Ordering Properties

Let’s take a quick look at ordering properties and how browsers interpret
them. Browser makers initially offer CSS3 functionality via browser prefixes:
-moz for Mozilla, -webkit for Chrome and Safari, -o for Opera, etc. Each
browser then ignores any prefixes not meant for it. The convention is to list
the browser-specific prefixes first and then the default property, as follows:

Smashing eBook #9│Mastering CSS for Web Developers │ 330

1 .somediv {

2 -moz-border-radius: 5px;

3 -webkit-border-radius: 5px;

4 border-radius: 5px; }

Yes, this creates a little overhead, but when you consider how such effects
were achieved before CSS3, it’s really not much.

Browsers that don’t support the property will ignore it. Any browser that
does support it will implement its browser-specific version; and when it
eventually supports the generic property, it will implement that.

Why order it in this way? Once all of the browsers implement a property the
same way, then they will adopt the default version of the property; until
then, they will use the prefixed version. By listing the properties in the order
shown above, we ensure that the standard version is implemented as the
fallback once it is supported, hopefully leading to more consistent
rendering across browsers.

JavaScript

JavaScript is the most common method of enabling cross-browser CSS3
features support, and it can either be used as a substitute for or to enable
CSS3 properties in older browsers or be used as an alternative.

Modernizr

A useful JavaScript tool for implementing CSS3 fallbacks is Modernizr. For
anyone working with CSS3 in a production environment (as opposed to
merely as a proof of concept), it is essential. Modernizr enables you to use

Smashing eBook #9│Mastering CSS for Web Developers │ 331

http://www.modernizr.com/
http://www.modernizr.com/

CSS3 for properties where it is supported, and to provide sensible
alternatives where it isn’t.

Modernizr works by adding classes to the html element of the page, which
you would then call in the style sheet.

For example, to display a different background when CSS3 gradients are
not supported, your code would look something like this:

1 .somediv {

2 background: -webkit-gradient(linear, 0% 0%, 0% 100%,

3 from(#660C0C), to(#616665), color-stop(.

6,#0D0933)); }

4

5 .no-cssgradients .somediv {

6 background: url('/images/gradient.jpg'); }

Smashing eBook #9│Mastering CSS for Web Developers │ 332

Conversely, to display a different background only where the CSS3 property
is supported, you would do this:

1 .cssgradients .somediv {

2 background: -webkit-gradient(linear, 0% 0%, 0% 100%,

3 from(#660C0C), to(#616665), color-stop(.

6,#0D0933));}

4

5 .somediv {

6 background: url('/images/gradient.jpg'); }

In this way, you control what is shown in the absence of a property, and you
tailor the output to what is sensible. In this case, you could serve a gradient
image in the absence of support for CSS3 gradients.

With this additional control, you can tailor the output quite accurately and
avoid any clashes that might arise from a missing property.

CSS3 PIE

Sadly, this has nothing to do with the tasty dessert. CSS3 PIE stands for
progressive Internet Explorer. As the official description says:

Smashing eBook #9│Mastering CSS for Web Developers │ 333

http://css3pie.com/
http://css3pie.com/

PIE makes Internet Explorer 6 to 8 capable of rendering several of the
most useful CSS3 decoration features.

http://css3pie.com

While it doesn’t support a myriad of features, it does allow you to use box-
shadow, border-radius and linear gradients in IE without doing much
extra to the code. First, upload the CSS PIE JavaScript file, and then when
you want to apply the functionality, you would include it in the CSS, like so:

Smashing eBook #9│Mastering CSS for Web Developers │ 334

http://css3pie.com
http://css3pie.com

1 .somediv {

2 -webkit-border-radius: 5px;

3 -moz-border-radius: 5px;

4 border-radius: 5px;

5 behavior: url(path/to/PIE.htc); }

Fairly straightforward, and it can save you the hassle of having to use
JavaScript hacks to achieve certain effects in IE.

Selectivzr

CSS3 has expanded its repertoire beyond advanced selectors such as
[rel="selector"] and pseudo-selectors such as :focus, to include
selectors such as :nth-of-type, which give you much more control and
focus and allow you to dispense with a lot of presentational classes and IDs.
Support for selectors varies greatly, especially with the wide variety of
additional selectors being introduced.

Smashing eBook #9│Mastering CSS for Web Developers │ 335

Therefore, the third weapon in your CSS3 arsenal will most likely be
Selectivzr, which enables advanced CSS3 selectors to be used in older
browsers and is aimed squarely at old IE versions.

Head over to the Selectivizr website and download and add the script. You
will have to pair it with a JavaScript framework such as jQuery or MooTools,
but chances are you’re working with one already. The home page is worth a
quick look because not all selectors are supported by all JavaScript libraries,
so make sure what you need is supported by your library of choice.

Smashing eBook #9│Mastering CSS for Web Developers │ 336

http://selectivizr.com/
http://selectivizr.com/

Problems?

The main issue with all of the solutions above is that they’re based on
JavaScript, and some website owners will be concerned about users who
have neither CSS3 support nor JavaScript enabled. The best solution is to
code sensibly and make use of natural CSS fallbacks and allow the browser
to ignore CSS properties that it doesn’t recognize.

This may well make your website look a bit less like the all-singing, all-
dancing CSS3-based design that you had in mind, but remember that the
number of people without CSS3 support and without JavaScript enabled
will be low, and the best you can do is make sure they get a usable,
functional and practical experience of your website, thus allowing you to
continue tailoring the output to the user’s platform.

Some CSS3 Properties: Considerations And Fallbacks

Many CSS3 properties are being used, and by now we have gotten used to
the quirks and pitfalls of each iteration of the CSS protocol. To give you a
quick start on some of the more popular CSS3 properties, we’ll look at
some of the issues you may run into and some sensible ways to fall back in
older browsers.

All of the information in this article about browser support is correct as of
May 2011. You can keep up to date and check out further information
about support by visiting findmebyIP. Support has not been checked in
browser versions older than Chrome 7.0, Firefox 2.0, Opera 9, Safari 2 and
Internet Explorer 6.

Smashing eBook #9│Mastering CSS for Web Developers │ 337

http://findmebyip.com/dotnet
http://findmebyip.com/dotnet

Border Radius

Support: Google Chrome 7.0+, Firefox (2.0+ for standard corners, 3.5+ for
elliptical corners), Opera 10.5+, Safari 3.0+, IE 9

Property: border-radius

Vendor prefixes: -webkit-border-radius, -moz-border-radius

Example usage (even corners with a radius of 5 pixels):

1 .somediv {

2 -moz-border-radius: 5px;

3 -webkit-border-radius: 5px;

4 border-radius: 5px; }

Fallback behavior: rounded corners will display square.

WordPress log-in button in IE (left) and Google Chrome (right).

Without the hassle of extra divs or JavaScript or a lot of well-placed, well-
sliced images, we can give elements rounded corners with the use of the
straightforward border-radius property.

What about browsers that don’t support border-radius? The easiest
answer is, don’t bother. Is having rounded corners in unsupported browsers
really worth the hassle? If it is, then you need only do what you’ve been
doing for years: JavaScript hacks and images.

Smashing eBook #9│Mastering CSS for Web Developers │ 338

Could this property trip you up? Actually, border-radius is pretty
straightforward. Be careful using it on background images, because there
are certainly some bugs in some browser versions that keep the corners of
images from appearing rounded. But aside from that, this is one of the
best-supported CSS3 properties so far.

Border Image

Support: Google Chrome 7.0+, Firefox 3.6+, Opera 11, Safari 3.0+, no
support in IE

Property: border-image, border-corner-image

Vendor prefixes: -webkit-border-image, -moz-border-image

Example usage (a repeating image with a slice height and width of 10
pixels):

1 .somediv {

2 -webkit-border-image: url(images/border-image.png) 10

10 repeat;

3 -moz-border-image: url(images/border-image.png) 10 10

repeat;

4 border-image: url(images/border-image.png) 10 10

repeat; }

Fallback behavior: shows standard CSS border if property is set, or no
border if not specified.

Smashing eBook #9│Mastering CSS for Web Developers │ 339

A border-image demo on CSS3.info. The bottom paragraph shows a standard
property of border: double orange 1em.

The border-image property is less heralded among the new properties,
partly because it can be a bit hard to wrap your head around. While we
won’t go into detail here, consider the image you are working with, and test
a few variations before implementing the property. What will the border
look like if the content overflows? How will it adjust to the content? Put
some thought into your choice between stretch and repeat.

Experiment with an image before applying a border to make sure that
everything is correct, and test different sizes and orientations to see how a
repeating border looks.

Smashing eBook #9│Mastering CSS for Web Developers │ 340

http://www.css3.info/preview/border-image/
http://www.css3.info/preview/border-image/

A border image in use on Blog.SpoonGraphics. The image on the left is the base
image for the border.

There isn’t much in the way of fallbacks, aside from the traditional method
of coding for eight slice-image borders, mapped out with extra containing
divs. This is a lot of work and is really unnecessary. Selecting an appropriate
border color and width should be a sensible fallback for browsers without
border-image support.

Box Shadow

Support: Google Chrome 7.0+, Firefox 3.6+, Safari 3.0+, IE 9

Property: box-shadow

Vendor prefixes: -webkit-box-shadow, -moz-box-shadow (-moz no
longer needed as of Firefox 4)

Example usage (showing a black shadow, offset down by 10 pixels and
right by 10 pixels, and with a blur radius of 5 pixels):

Smashing eBook #9│Mastering CSS for Web Developers │ 341

http://blog.spoongraphics.co.uk/
http://blog.spoongraphics.co.uk/

1 .somediv {

2 -moz-box-shadow: 10px 10px 5px #000;

3 -webkit-box-shadow: 10px 10px 5px #000;

4 box-shadow: 10px 10px 5px #000; }

Fallback behavior: shadow is not displayed.

Box shadow allows you to quickly and easily add a little shadow to your
elements. For anyone who has used shadows in Photoshop, Fireworks or
the like, the principles of box shadow should be more than familiar.

A subtle box shadow on the left, and a selective borders fallback on the right.

In its absence? You could use selective borders (i.e. a left and bottom
border to imitate a thin box shadow).

1 .somediv {

2 -moz-box-shadow: 1px 1px 5px #888;

3 -webkit-box-shadow: 1px 1px 5px #888;

4 box-shadow: 1px 1px 5px #888; }

5

6 .no-boxshadow .somediv {

7 border-right: 1px solid #525252;

8 border-bottom: 1px solid #525252; }

Smashing eBook #9│Mastering CSS for Web Developers │ 342

RGBa and HSLa

RGBa support: Google Chrome 7.0+, Firefox 3.0+, Opera 10+, Safari 3.0+,
IE 9

HSLA support: Google Chrome 7.0+, Firefox 3.0+, Opera 10+, Safari 3.0+

Property: rgba, hsla

Fallback behavior: the color declaration is ignored, and the browser falls
back to the previously specified color, the default color or no color.

1 .somediv {

2 background: #f00;

3 background: rgba(255,0,0,0.5); }

In the example above, both background declarations specify the color red.
Where RGBa is supported, it will be shown at 50% (0.5), and in other cases
the fallback will be to the solid red (#f00).

24 Ways makes great creative use of RGBa.

While there is broad support for opacity, its downside is that everything
associated with an element becomes transparent. But now we have two
new ways to define color: RGBa (red, green, blue, alpha) and HSLa (hue,
saturation, light, alpha).

Smashing eBook #9│Mastering CSS for Web Developers │ 343

http://24ways.org/
http://24ways.org/

Both offer new ways to define colors, with the added benefit of allowing
you to specify the alpha channel value.

The obvious fallback for RGBa and HSLa is a solid color; not a problem, but
the main thing to watch out for is legibility. A semi-transparent color can
have quite a different tone to the original. An RGB value shown as a solid
color and the same value at .75 opacity can vary massively depending on
the background shade, so be sure to check how your text looks against the
background.

If transparency is essential, you could also use a background PNG image. Of
course, this brings with it the old IE6 problem, but that can be solved with
JavaScript.

Transform

Support: Google Chrome 7.0+, Firefox 3.6+, Opera 10.5+, Safari 3.0+

3-D transforms support: Safari

Property: transform

Vendor prefixes: -o-transform

Example usage (rotating a div 45° around the center, and scaling it to half
the original size — for illustration only, so the translate and skew values
are not needed):

1 .somediv {

2 -webkit-transform: scale(0.50) rotate(45deg)

3 translate(0px, 0px) skew(0deg, 0deg);

4 -webkit-transform-origin: 50% 50%;

5 -moz-transform: scale(0.50) rotate(45deg)

Smashing eBook #9│Mastering CSS for Web Developers │ 344

6 translate(0px, 0px) skew(0deg, 0deg);

7 -moz-transform-origin: 50% 50%;

8 -o-transform: scale(0.50) rotate(45deg)

9 translate(0px, 0px) skew(0deg, 0deg);

10 -o-transform-origin: 50% 50%;

11 transform: scale(0.50) rotate(45deg)

12 translate(0px, 0px) skew(0deg, 0deg);

13 transform-origin: 50% 50%; }

Fallback behavior: the transform is ignored, and the element displays in its
original form.

Westciv offers a useful tool for playing around with transforms.

The transform property gives you a way to rotate, scale and skew an
element and its contents. It’s a great way to adjust elements on the page
and give them a slightly different look and feel.

Smashing eBook #9│Mastering CSS for Web Developers │ 345

http://www.westciv.com/tools/transforms/index.html
http://www.westciv.com/tools/transforms/index.html

A simple fallback in the absence of an image-based transform is to use an
alternative image that is already rotated. And if you want to rotate content?
Well, you can always use JavaScript to rotate the element. Another simple
alternative is to rotate the background element in an image editor
beforehand and keep the content level.

We’ve gotten by with level elements for so many years, there’s no reason
why people on old browsers can’t continue to put up with them.

Animations and Transitions

Transitions support: Google Chrome 7.0+, Firefox 4.02, Opera 10.5+, Safari
3.0+

Animations support: Google Chrome 7.0+, Safari 3.0+

Property: transition

Vendor prefixes: -webkit-transition, -moz-transition, -o-transition

Example usage (a basic linear transition of text color, triggered on hover):

1 .somediv:hover {

2 color: #000;

3 -webkit-transition: color 1s linear;

4 -moz-transition: color 1s linear;

5 -o-transition: color 1s linear;

6 transition: color 1s linear; }

A basic animation that rotates an element on hover:

Smashing eBook #9│Mastering CSS for Web Developers │ 346

1 @-webkit-keyframes spin {

2 from { -webkit-transform: rotate(0deg); }

3 to { -webkit-transform: rotate(360deg); }

4 }

5

6 .somediv:hover {

7 -webkit-animation-name: spin;

8 -webkit-animation-iteration-count: infinite;

9 -webkit-animation-timing-function: linear;

10 -webkit-animation-duration: 10s; }

Fallback behavior: both animations and transitions are simply ignored by
unsupported browsers. With animations, this means that nothing happens,
and no content is animated. With transitions, it depends on how the
transition is written; in the case of a hover, such as the one above, the
browser simply displays the transitioned state by default.

Smashing eBook #9│Mastering CSS for Web Developers │ 347

The 404 page for the 2010 Future of Web Design conference attracted attention for
its spinning background. Visit the website in IE and you’ll see a static background
image.

Animations and transitions in CSS3 are slowly seeing more use, from subtle
hover effects to more elaborate shifting and rotating of elements across the
page. Most effects either start right at page load or (more frequently) are
used to enhance a hover effect. Once you get down and dirty with
animations, there’s great fun to be had, and they’re much more accessible
to designers now than before.

Starting off small with the CSS3 transition property is best, subtly
transitioning things such as link hovers before moving on to bigger things.

Once you’re comfortable with basic transitions and transforms, you can get
into the more involved animation property. To use it, you declare
keyframes of an animation with @-webkit-keyframes and then call this
keyframe animation in other elements, declaring its timing, iterations, etc.
Note that animations work better with CSS3 transforms than with other

Smashing eBook #9│Mastering CSS for Web Developers │ 348

http://futureofwebdesign.com/london-2010/404
http://futureofwebdesign.com/london-2010/404

properties, so stick to transform and translate rather than shifting
margins or absolute positioning.

Of course, people have been animating with JavaScript for years. But if you
want to do something as simple as animating a hover state, then it hardly
seems worth the extra coding. The simplest thing to do for unsupported
browsers is to specify a state for hover, without any transition to it.

Font Face (not new in CSS3)

Support for different font formats: Google Chrome 7.0+, Firefox 3.1+,
Opera 10+, Safari 3.1+, IE 6+

Property: @font-face

Example usage (a @font-face declaration for Chunk Five, an OTF font,
and calling it for h1 headings):

1 @font-face {

2 font-family: ChunkF; src: url('ChunkFive.otf'); }

3

4 h1 {

5 font-family: ChunkF, serif; }

Fallback behavior: just as when any declared font isn’t available, the
browser continues down the font stack until it finds an available font.

Smashing eBook #9│Mastering CSS for Web Developers │ 349

The New Adventures in Web Design conference serves fonts from Typekit.

Okay, this isn’t strictly new to CSS3. Many of you will point out that this has
been around as long as IE5. However, text replacement is certainly starting
to see increased usage as browser makers roll out increased support for
@font-face.

One issue that @font-face suffers from is that a font isn’t displayed on
the screen until the browser has downloaded it to the user’s machine,
which sometimes means that the user sees a “flash of unstyled text” (FOUT).
That is, the browser displays a font from further down the stack or a default
font until it has finished downloading the @font-face file; once the file
has downloaded, the text flashes as it switches to the @font-face version.
So, minimizing the flash by stacking fonts of a similar size and weight is
important. If the stack is poorly compiled, then not only could the text be
resized, but so could containing elements, which will confuse users who
have started reading the page before the proper font has loaded.

The good news is that Firefox 4 doesn’t has a FOUT any longer, IE9,
however, does have a FOUT but WebInk has written a script FOUT-B-GONE

Smashing eBook #9│Mastering CSS for Web Developers │ 350

http://newadventuresconf.com/
http://newadventuresconf.com/
http://www.typekit.com/
http://www.typekit.com/
http://www.extensis.com/en/WebINK/fout-b-gone/
http://www.extensis.com/en/WebINK/fout-b-gone/

which takes these facts into account and helps you hide the FOUT from
your users in FF3.5-3.6 and IE.

On his blog, Web designer Florian Schroiff uses @font-face to serve the Prater
font (bottom), falling back to Constina, Georgia (top) and Times New Roman.

Many font delivery services, including TypeKit and Google Web Fonts,
deliver their fonts via JavaScript, which gives you control over what is
displayed while the font is being downloaded as well as what happens
when the font actually loads.

Because browsers wait until the full file of a font kit has loaded before
displaying it, plenty of services allow you to strip out unnecessary parts of
the kit to cut down on size. For example, if you’re not going to be using
small caps, then you can strip it out of the file so that the font renders more
quickly.

Advanced Selectors

Support (varies depending on the selector used): Google Chrome 7.0+,
Firefox 3.6+, Opera 9.0+, Safari 2.0+, IE 6+

Smashing eBook #9│Mastering CSS for Web Developers │ 351

http://blog.florianschroiff.com/
http://blog.florianschroiff.com/
http://tyepkit.com/
http://tyepkit.com/
http://www.google.com/webfonts
http://www.google.com/webfonts

Property: many, including :nth-of-type, :first-child, :last-
child, [attr="…"]

Example usage (coloring only links that point to Smashing Magazine, and
coloring odd-numbered rows in tables):

1 a[href*=smashingmagazine.com] {

2 color:#f00; }

3

4 tr:nth-of-type(odd) {

5 background: #ddd; }

Fallback behavior: In the absence of support for advanced selectors, the
browser does not apply the targeted style to the element and simply treats
it as any other element of its type. In the two examples above, the link
would take on the standard link properties but not the specified color, and
the odd-numbered table rows would be colored the same as other table
rows.

Advanced selectors are a great tool for reducing the code on a website. You
will be able to get rid of many presentational classes and gain more control
of the selections in your style sheet.

Using Selectivzr, you can get older browsers to support these advanced
selectors, which makes the selectors easier to use and more robust.

Abandoning classes and IDs altogether in favor of nth-type is tempting.
But don’t throw them away just yet. Use advanced selectors when an
element’s style is based on its location in the document or a series; for
example, using nth-type(odd) for table rows or using last-of-type
to remove some padding at the bottom of a list.

Smashing eBook #9│Mastering CSS for Web Developers │ 352

If an element’s style is based on its content, then stick with classes and IDs.
That is, if inserting a new element or changing the order of items would
break the style, then stick with the old method.

However, if an element is already sufficiently styled, then you probably
don’t need an additional class or ID at all (nor an advanced selector, for that
matter).

Columns

Support: Google Chrome 7.0+, Firefox 2.0+, Safari 3.0+, Opera 11.10+

Property: column-count

Vendor prefixes: -webkit-column-count, -moz-column-count

Example usage (splitting content into three columns):

1 .somediv {

2 -moz-column-count: 3;

3 -webkit-column-count: 3;

4 column-count: 3; }

Fallback behavior: in the absence of support for multiple columns, the
browser spreads the content across the full width that the columns would
have taken up.

Smashing eBook #9│Mastering CSS for Web Developers │ 353

Multiple columns and their fallback on Inayaili de León’s website.

This property gives you a nice easy way to spread content across multiple
columns. The technique is standard in print, and on the Web it makes it
easy to read content without needing to scroll. But you didn’t need me to
tell you that, did you?

Because the property’s main purpose is to allow users to read horizontally
without scrolling, first make sure that your columns aren’t too tall. Having
to scroll up and down to read columns not only defeats their purpose but
actually makes the content harder to read.

There are some JavaScript solutions for multiple columns. For older
browsers, though, there’s generally no need to stick with a multi-column
layout; rather, you could consider sensible alternatives for fallbacks.

Smashing eBook #9│Mastering CSS for Web Developers │ 354

http://yaili.com/
http://yaili.com/

In the absence of CSS3 support, the browser will flow content across the full
width of the container. You’ll want to be careful about legibility. It can be
very heard to read content that spans the width of an area that is intended
to be broken into three columns. In this case, you’ll want to set a suitable
line length. There are a few ways to do so: increase the margins, change the
font size or decrease the element’s width. Floating elements such as images
and block quotes out of the flow of text can help to fill up any leftover
space in the single column.

Gradients

Support: Google Chrome 7.0+ for -webkit-gradient, Google 10+ for -
webkit-linear-gradient and -webkit-radial-gradient, Firefox
3.6+, Safari

Property: linear-gradient, radial-gradient

Vendor prefixes: -webkit-gradient, -webkit-linear-gradient, -webkit-radial-
gradient, -moz-linear-gradient, moz-radial-gradient

Example usage (a linear white-to-black gradient running from top to
bottom — notice the lack of -linear- in the Webkit declaration):

1 .somediv {

2 background-image: -webkit-gradient(linear, 0% 0%, 0%

100%,

3 from(#ffffff), to(#000000));

4 background-image: -webkit-linear-gradient(0% 0%, 0%

100%,

5 from(#ffffff), to(#000000));

6 background-image: -moz-linear-gradient(0% 0% 270deg,

7 #ffffff, #000000);

Smashing eBook #9│Mastering CSS for Web Developers │ 355

8 background-image: linear-gradient(0% 0% 270deg,

9 #ffffff, #000000); }

1 .somediv {

2 background-image: -moz-radial-gradient(50% 50%,

farthest-side,

3 #ffffff, #000000);

4 background-image: -webkit-gradient(radial, 50% 50%,

0, 50% 50%, 350,

5 from(#ffffff), to(#000000));

6 background-image: -webkit-radial-gradient(50% 50%, 0,

50% 50%, 350,

7 from(#ffffff), to(#000000));

8 background-image: radial-gradient(50% 50%, farthest-

side,

9 #ffffff, #000000); }

A radial gradient running from white in the center to black on the outside:

1 .somediv {

2 background-image: -moz-radial-gradient(50% 50%,

farthest-side,

3 #ffffff, #000000);

4 background-image: -webkit-gradient(radial, 50% 50%,

0, 50% 50%, 350,

5 from(#ffffff), to(#000000));

6 background-image: -webkit-radial-gradient(50% 50%, 0,

50% 50%, 350,

7 from(#ffffff), to(#000000));

8 background-image: radial-gradient(50% 50%, farthest-

side,

Smashing eBook #9│Mastering CSS for Web Developers │ 356

9 #ffffff, #000000); }

Fallback behavior: the browser will show the same behavior as it would for
a missing image file (i.e. either the background or default color).

ColorZilla’s Ultimate CSS Gradient Generator offers a familiar interface for
generating gradients.

Ah, the good ol’ Web 2.0 look, but using nothing but CSS. Thankfully,
gradients have come a long way from being used for glossy buttons, and
this CSS3 property is the latest step in that evolution.

Gradients are applied the way background images are, and there are a few
ways to do it: hex codes, RGBa and HSLa.

Be careful when applying a background with a height of 100% to an
element such as the body. In some browsers, this will limit the gradient to
the edge of the visible page, and so you’ll lose the gradient as you scroll
down (and if you haven’t specified a color, then the background will be

Smashing eBook #9│Mastering CSS for Web Developers │ 357

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com/gradient-editor/

white). You can get around this by setting the background-position to
fixed, which ensures that the background doesn’t move as you scroll.

Specifying a background color not only is a good fallback practice but can
prevent unforeseen problems. As a general rule, set it either to one end of
the gradient or to a color in the middle of the range.

Legibility is also a consideration. Making text readable against a solid
background color is easy. But if a gradient is dramatic (for example, from
very light to very dark), then choose a text color that will work over the
range of the gradient.

Radial gradients are a bit different, and getting used to the origins and
spreads can take a bit of playing around. But the same principles apply.
Note that Webkit browsers are switching from the -webkit-gradient
property to -webkit-linear-gradient and -webkit-radial-
gradient. To be safe, include both properties, but (as we have learned)
put the old property before the new one.

These issues aren’t new; we’ve been using gradients for ages. If you really
need one, then the obvious fallback is simply to use an image. While it
won’t adapt to the dimensions of the container, you will be able to set its
exact dimensions as you see fit.

Multiple Backgrounds

Support: Google Chrome 7.0+, Firefox 3.6+, Safari 2.0+, IE 9

Property: background

Example usage (multiple backgrounds separated by a comma, the first on
top, the second behind it, the third behind them, and so on):

Smashing eBook #9│Mastering CSS for Web Developers │ 358

1 .somediv {

2 background: url('background1.jpg') top left no-

repeat,

3 url('background2.jpg') bottom left repeat-y,

4 url('background3.jpg') top right no-repeat; }

Fallback behavior: an unsupported browser will show only one image, the
one on top (i.e. the first in the declaration).

The fantastic Lost World’s Fairs website shows multiple backgrounds in its header
and a solid color as a fallback.

Being able to set multiple background images is very useful. You can layer
images on top of one another. And because CSS gradients can be applied
as backgrounds, you can layer multiple images and gradients with ease.

Smashing eBook #9│Mastering CSS for Web Developers │ 359

http://lostworldsfairs.com/
http://lostworldsfairs.com/

You can also position background elements within dynamically sized
containers. For example, you could have an image appear 25% down the
container and then another at 75%, both of which move with any dynamic
content.

If multiple backgrounds are essential to your website, you could insert
additional elements and images into the DOM using JavaScript. But again,
is this worth doing? A single well-chosen background image might work
best. It could be a matter of picking the most important image or blending
the images into a composite (even if this makes for a less dynamic
background).

Use Only Where Needed

It’s worth repeating that CSS3 is not a necessity. Just because you can use
CSS3 properties, doesn’t mean your website would be any worse off
without them. Applying these effects is now so simple, and so getting
carried away becomes all too easy. Do you really need to round every
corner or use multiple backgrounds everywhere? Just as a film can work
without 3-D, so should your design be able to work without CSS3 splashed
everywhere indiscriminately. The technology is simply a tool to make our
lives easier and help us create better designs.

It is a testament to those who are already using CSS3 that there are very
few instances of its misuse at the moment. The websites that do seem to
misuse it suggest that their designers either used CSS3 for its own sake or
didn’t consider its implications on certain platforms.

In “Web Design Trends 2010: Real-Life Metaphors and CSS3 Adaptation,”
Smashing Magazine’s Vitaly Friedman notes a number of misuses of the
text-shadow property.

Smashing eBook #9│Mastering CSS for Web Developers │ 360

http://www.smashingmagazine.com/2010/05/20/web-design-trends-2010-real-life-metaphors-and-css3-adaptation/
http://www.smashingmagazine.com/2010/05/20/web-design-trends-2010-real-life-metaphors-and-css3-adaptation/

A less-than-ideal use of CSS3 on SramekDesign.com.

The text-shadow property has certainly become popular. One-pixel white
shadows are popping up in text everywhere for no apparent reason. As
Vitaly says:

… before adding a CSS3 feature to your website, make sure it is actually
an enhancement, added for the purpose of aesthetics and usability, and
not aesthetics at the cost of usability.

As you become familiar with CSS3’s new properties, you will learn to
recognize when and where problems occur and where the properties aren’t
really necessary.

Smashing eBook #9│Mastering CSS for Web Developers │ 361

http://www.sramekdesign.com/
http://www.sramekdesign.com/

Using CSS3

CSS3 is the future of the Web, no argument about that. So, versing yourself
right now in the language of the future makes sense. While IE is still the
single most popular browser, it now has less than half of the market share,
meaning that the majority of people no longer use it and it can no longer
be used as an excuse not to explore new possibilities and opportunities.

To use CSS3 means to embrace the principle that websites need not look
the same in every browser, but rather should be tailored to the user’s
browsing preferences via sensible fallbacks. It isn’t daunting or inaccessible,
and the best way to learn is by diving in.

Smashing eBook #9│Mastering CSS for Web Developers │ 362

The Authors
Christian Krammer

Christian Krammer is Web designer at one of Austria's biggest newspapers
called "Kleine Zeitung" where he worked for nearly ten years. He also is the
proud owner of css3files.com, a comprehensive website about CSS3. A large
range of properties is explained there for you to learn from and reference.
You can follow Christian on Twitter @edge0703.

Dave Sparks

Dave Sparks is a Web designer and developer who has dabbled on the Web
for over 10 years with more than six years of commercial experience. He is a
part-timer who freelances and does work for Armitage Online. He can be
found writing about various topics at Kamikazemusic.com and tweeting as
@dsparks83. He also runs long distances, drinks lots of tea and spends time
flying planes in his day job.

Harry Roberts

Harry Roberts  is a Senior UI Developer for Sky.com and type nerd from the
UK. Enthusiastic, passionate and often outspoken, he is a writer, designer
and member of Smashing Magazine’s Experts Panel. He tweets at
@csswizardry.

Kayla Knight

Kayla Knight is a full-time freelance Web designer and developer, and likes
to blog a lot too. She also created and runs Freelance Mingle, a social
network for freelancers.

Smashing eBook #9│Mastering CSS for Web Developers │ 363

http://www.kleinezeitung.at/
http://www.kleinezeitung.at/
http://css3files.com/
http://css3files.com/
http://twitter.com/edge0703
http://twitter.com/edge0703
http://www.armitageonline.co.uk/
http://www.armitageonline.co.uk/
http://www.kamikazemusic.com/
http://www.kamikazemusic.com/
http://twitter.com/dsparks83
http://twitter.com/dsparks83
http://www.sky.com/
http://www.sky.com/
http://www.twitter.com/csswizardry
http://www.twitter.com/csswizardry
http://kaylaknight.com/
http://kaylaknight.com/
http://freelancemingle.com/
http://freelancemingle.com/

Inayaili de Leon

Inayaili de León is a London-based Portuguese web designer. When she’s
not designing sites or coding HTML and CSS, she is usually writing about it
on her own web design blog or as a guest author on various sites. She
works at Canonical and is pretty much incapable of going a day without at
least 30 Twitter updates. Cats, chocolate, tea, pizza and pancakes are
amongst the things that make her less dangerous on Monday morning
commutes.

Louis Lazaris

Louis Lazaris is a freelance Web developer based in Toronto, Canada. He
blogs about front-end code on Impressive Webs and is a coauthor of
HTML5 and CSS3 for the Real World, published by SitePoint. You can follow
Louis on Twitter or contact him through his website.

Rachel Andrew

Rachel Andrew is a front and back-end Web developer and Director of
edgeofmyseat.com, a UK Web development consultancy and the creators of
the small content management system, Perch. She is the author of a
number of Web design and development books including CSS Anthology:
101 Essential Tips, Tricks and Hacks (3rd edition), published by SitePoint
and also writes on her blog rachelandrew.co.uk. Rachel tries to encourage a
common sense application of best practice and standards adoption in her
own work and when writing about the web.

Smashing eBook #9│Mastering CSS for Web Developers │ 364

http://yaili.com/
http://yaili.com/
http://londonchronicles.com/
http://londonchronicles.com/
http://www.impressivewebs.com/
http://www.impressivewebs.com/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://edgeofmyseat.com/
http://edgeofmyseat.com/
http://grabaperch.com/
http://grabaperch.com/
http://www.rachelandrew.co.uk/
http://www.rachelandrew.co.uk/

Richard Shepherd

Richard Shepherd (@richardshepherd) is a UK based Web designer and
front-end developer. He loves to play with HTML5, CSS3, jQuery and
WordPress, and currently works full-time bringing VoucherCodes.co.uk to
life. He has an awesomeness factor of 8, and you can also find him at
www.richardshepherd.com.

Trent Walton

Trent Walton is founder and 1/3 of Paravel Inc., a custom Web design and
development shop based out of the Texas Hill Country. When he’s not
working on client projects, he’s probably writing & designing articles for his
blog, or contributing ideas for the next edition of TheManyFacesOf.com.

Vitaly Friedman

Vitaly Friedman is editor-in-chief of Smashing Magazine, an online
magazine dedicated to designers and developers.

Zoe Mickley Gillenwater

Zoe Mickley Gillenwater is the author of the books Stunning CSS3: A
Project-based Guide to the Latest in CSS and Flexible Web Design: Creating
Liquid and Elastic Layouts with CSS. She currently works on AT&T's design
standards web team. Zoe is also a member of the Web Standards Project
(WaSP) Adobe Task Force and was previously a moderator of the popular
css-discuss mailing list. Find out more about Zoe on her blog and portfolio
site.

Smashing eBook #9│Mastering CSS for Web Developers │ 365

http://twitter.com/richardshepherd
http://twitter.com/richardshepherd
http://www.richardshepherd.com/
http://www.richardshepherd.com/
http://paravelinc.com/
http://paravelinc.com/
http://trentwalton.com/
http://trentwalton.com/
http://trentwalton.com/
http://trentwalton.com/
http://themanyfacesof.com/
http://themanyfacesof.com/
http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://stunningcss3.com/
http://stunningcss3.com/
http://stunningcss3.com/
http://stunningcss3.com/
http://www.flexiblewebbook.com/
http://www.flexiblewebbook.com/
http://www.flexiblewebbook.com/
http://www.flexiblewebbook.com/
http://zomigi.com/
http://zomigi.com/

